

2) Define structural isomerism.		
ns: The phenomenon in which compounds having different structural formulae have the same		
molecular formula is called structural isomerism.		
The number of carbon compounds increases due to isomerism.		
3) Saturated hydrocarbons are classified into three types. Write these names by	7	
giving one example each.		
Ans: Saturated hydrocarbons are classified into 3 types as :		
i) Straight chain hydrocarbon : Butane $-CH_3 - CH_2 - CH_2 - CH_3$		
ii) Branched chain hydrocarbon : 2 methyl propane $CH_3 - CH - CH_3$ CH_3	y	
iii) Rings of hydrocarbon : Cyclobutane $CH_3 - CH_2$ $ $ $ CH_2 - CH_2$		
4) Draw the structural formula for the followig IUPAC name.		
(i) 2 bromo-butene (ii) Butanoic acid		
Ans: i) $CH_3 - C = CH - CH_3$ ii) $CH_3 - CH_2 = CH_2 - COOH$ Br		
Q.3: Answer the following questions (Any Two)	6	
1) Write the difference between saturated hydrocarbon and unsaturated hydrocarbo	on.	
Ans: Saturated hydrocarbon Unsaturated hydrocarbon		

Ans:	Saturated hydrocarbon	Unsaturated hydrocarbon
	1) They contain only single bond	1) They contain double or triple bond
	between two carbon atoms (C–C)	between two carbon atom (C–C) or $(C \equiv C)$
	2) They are chemically less reactive	2) They are chemically more reactive.
	3) The general formulae $C_n H_{2n+2}$	3) The general formula is $C_n H_{2n-2}$
	4) Substitution reaction is characteristic	4) Addition reaction is characteristic property of
	property of saturated hydrocarbon	unsaturated compound
	5) Saturated hydrocarbons burns with	5) Unsaturated compounds burns with yellow
	clean blue flame	flame
	6) Example - Methane	6) Example - Ethane – $CH_2 = CH_2$
	Ethyne $H - C \equiv C - H$	
	Y	

2) What is combustion of carbon compounds? Explain with example.

Ans: The burning of carbon compounds in presence of oxygen to emit heat & light to form carbon dioxide & water is called combustion of carbon compounds.
For eg: methane burns to give carbon dioxide & water

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + heat + light$

3) What is meant by vinegar and gasohol? What are their uses?

Ans: Vinegar is a sour tasting liquid. It is 5-8% aqueous solution of acetic acid.

- 1) Vinegar contains acetic acid, water and other trace chemical.
- 2) Vinegar is made through the formation of ethanol by acetic acid bacteria.

Uses of vinegar :

i) Used as a cooking ingredient.

ii) Used as a preservative in pickles.

Gasohol:

It is a mixture of gasoline and ethyl alcohol. It is a mixture of nine parts of unleaded gasoline by volume with one part of ethanol ethylalcohol.

Uses of gasohol :

i) Gasohol is used as an additive to increase the efficiency of petrol.

ii) A mixture of 80% to 90% petrol with 20% or 10% ethyl alcohol used as a fuel in internal combustion engines.

iii) Used as a fuel in motor.

iv) In motor fuel contains 90% gasoline and 10% ethanol.

4) Write the IUPAC names of the following structural formulae.

Ans: i) $CH_3 - CH_2 - CH_3$ Br ii) $CH_3 - CO - CH_2 - CH_3$ iii) $CH_3 - CO - CH_2 - CH_3$ iii) $CH_3 - CH_2 - CH_3 - CH_3 - OH$ Butane-1-ol

Q.4: Solve the following questions. (Any One)

1) Explain chemical properties of ethanoic acid.

Ans: i) Reaction with Base :

a) Reaction with strong base : Ethanoic acid gives neutralization reaction with a strong base sodium hydroxide to form a salt & water.

$$\begin{array}{c} CH_3 - COOH + NaOH \longrightarrow CH_3 - COONa + H_2O \\ (Acid) \qquad (Base) \qquad (Salt) \qquad (Water) \end{array}$$

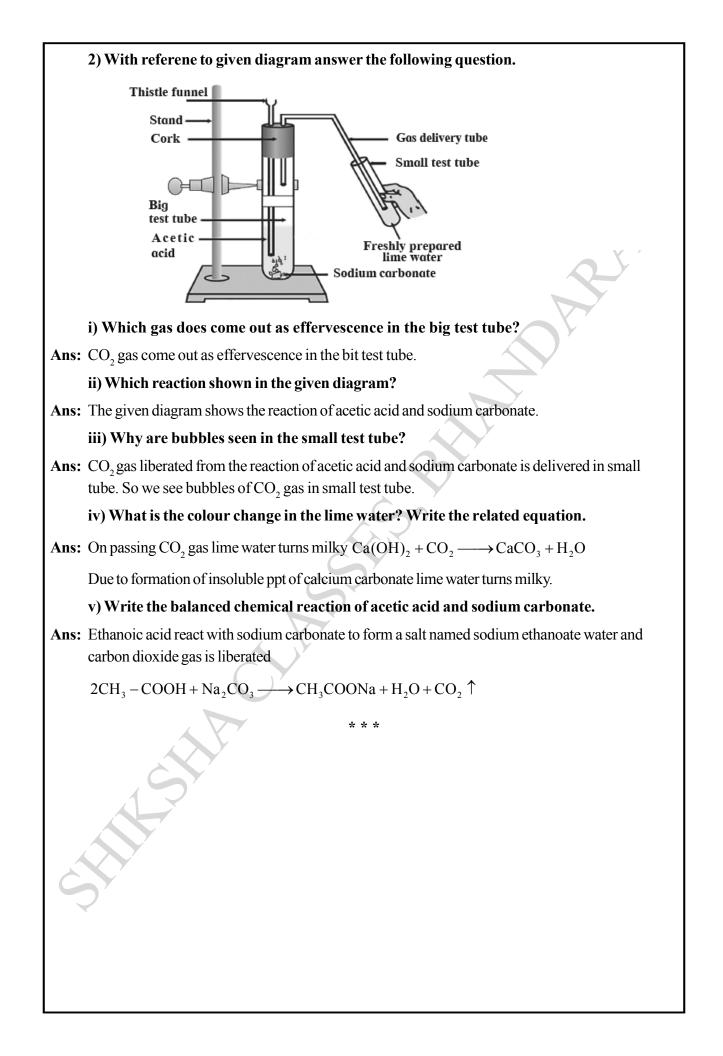
The IUPAC name of the salt formed is Sodium ethanoate while its common name is sodium acetate.

b) Reaction with carbonate and bicarbonate :

When ethanoic acid reacts with sodium carbonate to form salt named sodium ethanoate water and carbon dioxide gas

 $2CH_{3}COOH_{(aq)} + Na_{2}CO_{3(g)} \longrightarrow CH_{3}COONa_{(aq)} + H_{2}O(1) + CO_{2(g)}$

When the sodium bicarbonate is used then similar observation are obtained.


 $CH_3COOH + NaHCO_3 \longrightarrow CH_3COONa + H_2O + CO_2$

ii) Esterification Reaction : Substances having ester as the functional group are formed by reaction between a carboxylic acid and an alcohol.

Ethanoic acid reacts with ethanol in presence of an acid catalyst and ester. ethyl ethhanoate is formed.

$$CH_{3} - COOH + CH_{3} - CH_{2} - OH \xrightarrow{Acid} CH_{3} - COO - CH_{2} - CH_{3} + H_{2}O$$
(Ethanoic acid) (Ethanol) (Ethyl Ethanoate) (Water)

5

