

SHIKSHA CLASSES

Total Marks :30

Sub. : Maths Std. IX (CBSE)

Answer Paper

8: Quadrilaterals

SECTION - A (Each 1 Marks) Multiple Choice Questions. (MCQs) Q.1 : A diagonal of a parallelogram divides	Q.9 : Three angles of a quadrilateral are 75°, 90° and 75°. The fourth angle is Ans : d) 120°
 it into: Ans : d) All of the above Q.2 : ABCD is a rhombus such that ∠ACB = 40° then ∠ADB is : Ans : c) 50° Q.3 : Two consecutive angles of a parallelogram are in the ratio 1:3 then the smaller angle is: 	For question number 10 to 11 two statement are given one labeled Assertion and other labeled Reason select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below Q.10 : Assertion: A parallelogram consists of two congruent triangles. Reason : Diagonal of a parallelogram
Ans : d) 45° Q.4 : Perimeter of quadrilateral is than sum of its diagonals. Ans : a) greater	 divides it into two congruent triangles. Ans : a) both Assertion and reason are correct and reason is correct explanation for Assertion
Q.5 : The figure obtained by joining the	0.11 · Assertion · Two opposite angles of a
midpoint of the sides of a rhombus, taken in order is: Ans : b) a rectangle	The measure of one of the angle is 37°
midpoint of the sides of a rhombus, taken in order is:Ans : b) a rectangleQ.6 : A trapezium has:Ans : a) One pair of opposite sides parallel	 Assertion: Two opposite angles of a parallelogram are (3x-2)° and (50-x)° The measure of one of the angle is 37° Reason : Opposite angles of a parallelogram are equal.
 midpoint of the sides of a rhombus, taken in order is: Ans : b) a rectangle Q.6 : A trapezium has: Ans : a) One pair of opposite sides parallel Q.7 : The angles of a quadrilateral are in the ratio 4: 5: 10: 11. The angles are: Ans : b) 48°, 60°, 120°, 132° Q.8 : The quadrilateral formed by joining 	 Ansertion: Two opposite angles of a parallelogram are (3x-2)° and (50-x)°. The measure of one of the angle is 37°. Reason : Opposite angles of a parallelogram are equal. Ans : a) both Assertion and reason are correct and reason is correct explanation for Assertion. Section B (Each 2 Marks)
 midpoint of the sides of a rhombus, taken in order is: Ans : b) a rectangle Q.6 : A trapezium has: Ans : a) One pair of opposite sides parallel Q.7 : The angles of a quadrilateral are in the ratio 4: 5: 10: 11. The angles are: Ans : b) 48°, 60°, 120°, 132° Q.8 : The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if Ans : c) Diagonals of PQRS are 	 Q.11 : Assertion: Two opposite angles of a parallelogram are (3x-2)° and (50-x)° The measure of one of the angle is 37° Reason : Opposite angles of a parallelogram are equal. Ans : a) both Assertion and reason are correct and reason is correct explanation for Assertion. Section B (Each 2 Marks) Q.12 : If the diagonals of a rhombus are 9 cm and 12 cm. Find its sides. Ans : Let □ ABCD is a rhombus in which AC = 12 and BD = 9 cm intersect at 'O'

- Q.13: Show that if the diagonals of quadrilateral bisect each other at right angles. Then it is a rhombus.
- Ans : Given : AC and BD are diagonals of □ ABCD

AC \perp BD and AO = OC and BO = OD 'O' is intersection point of AC and BD. **To prove :** \Box ABCD is a rhombus. **Proof :** In \triangle AOB and \triangle COB

Therefore $AB = BC \dots (1) \dots (c.p.c.t.)$ Similarly, In $\triangle AOB$ and $\triangle AOD$ $AO = OA \dots$ (common) $OB = OD \dots (given)$ $\angle AOB = \angle AOD \dots$ (each 90°) $\therefore \Delta AOB \cong \Delta AOD \dots (by SAS)$ Therefore $AB = AD \dots (2) \dots (c.p.c.t.)$ and In $\triangle AOD$ and $\triangle COD$ AO = OC.... (given) $\angle AOD = \angle COD$...(each 90°) $OD = OD \dots (common)$ $\therefore \Delta AOD \cong \Delta COD \dots$ By SAS Therefore $AD = CD \dots (3) (c.p.c.t.)$ Thus, AB = BC = CD = AD ...(From 1, 2 & 3) Hence, \Box ABCD is a rhombus. OR

Prove that opposite angles of a parallelogram are equal.

Ans : Given : \Box ABCD is a parallelogram \therefore AB = CD and AD = BC

To prove : $\angle B = \angle D$ and $\angle A = \angle C$

Construction : Join AC

Proof : In $\triangle ABC$ and $\triangle CDA$

 $AB = CD \dots (given)$

 $BC = AD \dots (given)$

 $AC = AC \dots (common)$

 $\therefore \quad \Delta ABC \cong \Delta CDA \dots (By SSS)$

Therefore $\angle B = \angle D \dots (c.p.c.t.)$

Similarly we can prove $\angle A = \angle C$

Hence, opposite angles of a parallelogram are equal.

Section C (Each 3 Marks)

- Q.14 : In a triangle ABC median AD is produced to P such that AD = DP. prove that ABPC is a parallelogram.
- Ans : Given : In $\triangle ABC$, median AD is produced to P such that AD = DP.

To prove : ABPC is a parallelogram. **Proof :** Since AD is a median. Therefore, D is midpoint of BC. So, $BD = DC \dots (1)$ In \triangle ABD and \triangle PDC, we have, $BD = DC \dots (from 1)$ $\angle ADB = \angle PDC...(Vertically opp.angles)$ and AD = DP (Given) $\therefore \Delta ABD \cong \Delta PDC \dots (By SAS)$ Therefore AB = CPand $\angle ABD = \angle PCD \dots (2) \dots (c.p.c.t.)$ The transversal BC intersects AB and CP at B and C respectively such that $\angle ABC = \angle PCB$ i.e. Alternate interior angles are equal So, AB || CP (3) Thus, in quadrilateral ABPC, we have AB = CP and $AB \parallel CP$...(From (2) & (3))Hence, ABPC is a parallelogram. OR **ABCD** is a parallelogram. E and F

□ ABCD is a parallelogram. E and F are the mid points of the sides AB and CD respectively. Prove that the segments CE and AF trisect (divide into three equal parts) the diagonal BD.

Ans : Given : DABCD is a parallelogram. E

and F are the midpoints of the sides AB and CD respectively.

To prove : BP = PQ = QD**Proof**: \Box ABCD is a parallelogram \therefore AB = DC and AB || DC. E and F are midpoints of AB and DC respectively. \therefore AE || CF Therefore AECF is a parallelogram \Rightarrow EC || AF (1) In $\triangle DPC$, F is midpoint of DC and FQ || CP (From (1)) : Q is mid point of PD or PQ = QD (2) Similarly, In $\triangle ABQ$, BP = PQ.....(3) From (2) & (3)BP = PQ = QD Proved.

Q.15 : \triangle ABC is a right-angled triangle right angled at B; and P is the mid point of

AC. Prove that PB = PA =
$$\frac{1}{2}$$
 AC.

Ans : Given : \triangle ABC is a right angled triangle right angled at B, P is midpoint of CA

To prove :
$$PB = PA = \frac{1}{2}AC$$

Construction : Through P, draw a line parallel to BC, meeting AB in Q. **Proof :** Since P is mid point of AC and PQ \parallel BC (construction) \therefore Q is the mid point of AB (Converse

of midpoint theorem)

$$\therefore AQ = QB....(1)$$
Now In $\triangle ABC$, $\angle ABC = 90^{\circ}$
and PQ || BC

$$\therefore \angle PQA = \angle PQB = 90^{\circ}(2)$$
In $\triangle PPQ$ and $\triangle BPQ$
 $AQ = QB (from (1))$
 $\angle PQA = \angle PQB (from (2))$
 $QP = QP (common)$
 $\therefore \triangle APQ \cong \triangle BPQ (By SAS)$
Therefore PA = PB ...(3)..(c.p.c.t.)
But P is mid point of AC

$$\therefore PA = PC = \frac{1}{2}AC \dots (4)$$

Hence,
$$PB = PA = \frac{1}{2}AC$$
 ... (From (3)

& (4))

Proved.

Section D

(5 M)

- i) **ABED** is a parallelogram
- ii) DEFC is a parallelogram
- iii) AD || CF and AD = CF
- iv) **ACFD** is a parallelogram.

(ii) \square BEFC is a parallelogram (iii) AD \parallel CF and AD = CF $(iv)\square ACFD$ is a parallelogram. **Proof:** (i) Consider the quadrilateral ABED We have : AB = DE and $AB \parallel DE$ So, ABED is a parallelogram (One pair of opposite sides are equal and parallel) (ii) Now consider quadrilateral BEFC; We have, BC = EF and $BC \parallel EF$ So, BEFC is a parallelogram. (One pair of opposite sides are equal and parallel) (iii) $AD = BE and AD \parallel BE ...(1)$ $\dots (:: ABED is a ||gm)$ and CF = BE and $CF \parallel BE \dots (2)$ $\dots(\cdot: BEFC \text{ is a } ||gm)$ From (1) and (2), we have $AD = CF and AD \parallel CF$

(iv) Since AD = CF and AD || CF, therefore one pair of opposite sides are equal and parallel

So, ACFD is a parallelogram.

OR

ABCD is a rectangle and P, Q, R and S are mid points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is rhombus.

Ans : Given : A rectangle ABCD in which P, Q, R, S are midpoint of sides AB, BC, CD

and AD respectively.

To prove : □ PQRS is rhombus.

Construction : Join AC.

Proof : In $\triangle ABC$, P and Q are the midpoint of sides AB and BC respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \dots (1)$$

.... (mid point theorem)

In \triangle ADC, R and S are the mid point of CD and AD respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC (2)

From (1) and (2), we get

 $PQ \parallel SR \text{ and } PQ = SR$

PQRS is a parallelogram. (3)

 \therefore ABCD is a rectangle.

$$\Rightarrow AD = BC \quad \Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$

$$\Rightarrow AS = BQ.....(4)$$

In $\triangle APS$ and $\triangle BPQ$

 $AP = BP \dots (P \text{ is the mid point } AB)$

 $\angle PAS = \angle PBQ \dots$ (each 90°)

and AS = BQ....(From (4))

$$\therefore \quad \Delta APS \cong \Delta BPQ \dots (By SAS)$$

$$\Rightarrow PS = PQ \dots (5) \dots (c.p.c.t.)$$

From (3) and (5) we obtain that PQRS is a parallelogram such that PS = PQ

i.e. two adjacent sides are equal

Hence PQRS is a rhombus. Proved.

SECTION - E

Q.17 : Case Study : (Any four)

A class teacher gave students coloured paper in the shape of quadrilateral she asks to make a prallelogram from it using paper folding

- i) One angle of a quadrilateral is 108⁰ and the remaining three angles are equal then each of the three equal angles.
- **Ans :** c) 84⁰
 - ii) How can a parallelogrm be formed by using paper folding?
- Ans : b) By joining mid points of sides of a quadrilateral
 - iii) The quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS taken in order is rectangle if.
- Ans : c) diagonals of PQRS are perpendicular
 - iv) In the fig. ABCD and AEFG are two parallelogram. If $\angle C = 60^{\circ}$ then $\angle F$ is

- **Ans** : b) 60°
 - v) The angles of the quadrilateral are in the ratio 2 : 5 : 4 : 1 which of the following is true?
- **Ans** : d) both the largest angle in the quadrilateral is 150° and smallest angle is 30°

* * *

