

Sub. : MathsAnsweiStd. : VIII th (CBSE)5 : Squares and	r Paper Marks : 30 ad Square roots
Section A (Each 1 Mark) Select the most appropriate answer from the given options (MCQ'S - Q.1 to Q.5)	True or False. (Q.8 to Q.9)Q.8 : The product of two perfect squares is a perfect square.
Q.1 : Between 50 and 60, the perfect square number is	Ans : True Q.9 : There is only one perfect square
 Ans : d) None Q.2 : How many natural numbers lie between 8² and 9²? Ans : a) 16 	Ans : True Section B (Each 2 Marks) Q.10 : Find the square root of 2304 by prime factorisation method
Q.3 : The unit digit in the square of the number 132 is	Ans : By Division method. $2304 = 2 \times 3 \times 3$ Square root of 2304
Ans : d) 4 Q.4 : Which of the following is not pythagorean triplet?	i.e. $= 2 \times 2 \times 2 \times 2 \times 3$ $= 48$ $\frac{2 2304}{2 1152}$ $\frac{2 576}{2 288}$
Ans : d) 2, 3, 4 Q.5 : The smallest number by which 45 should be multiplied so as to get a perfect square is	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ans : c) 5 Fill in the blank. (Q.6 to Q.7)	$ \begin{array}{r} \overline{2} & 18 \\ \overline{3} & 9 \\ \overline{3} & 3 \end{array} $
Q.0 : $112 + 113 = (\)^{2}$. Ans : 15 Q.7 : There are non-square numbers between 4^{2} and 5^{2} .	OR Without adding, Find the sum of 1 + 3 + 5 + 7 + 9 + 11 + 12 + 15 + 17 + 19
Ans : 8 Write whether the following statements are	Ans : $1+3+5+7+9+11+12+15+17+19$ = Ten sum of first ten odd natural number = $10^2 = 100$

Q.11 :	Find the square root of 5776 by Division method.	Therefore, $\sqrt{441} = 21$
Ans ·	76	Hence, the length of the side of the square is 21 m.
	7 5776	Q.14 : In a right triangle ABC, ∠ B=90°, AB = 6cm, BC = 8cm, Find AC
	$\frac{+7}{146}$ 876	Ans : In right triangle ABC, $\angle B = 90^{\circ}$
	6 -876	: By Pythagoras Theoram
	0	$AC^2 = AB^2 + BC^2$
	Therefore $\sqrt{577(-7)}$	$AC^2 = 6^2 + 8^2$
	Section C (Each 3 Marks)	= 36 + 64
Q.12 :	Find the least number which must be	AC = $\sqrt{100}$
	added to 525, so to get a perfect square. Also find the square root of the perfect square so obtained.	A Y
Ans :	We have $\begin{array}{c c} 22\\ \hline 2 \\ \hline 525\\ \hline \end{array}$	e cm
	+2 -4	B 8 cm C
	42 123 - 84	By Division method
	This shows that $22^2 < 525$	
	Next perfect square is $23^2 = 529$	
	Hence, the least number to be added is	$\frac{+1}{20}$ 00
	$23^2 - 525 = 529 - 525 = 4$	
	Therefore, the perfect square so obtained is $525 + 4 = 529$	$\frac{1}{1}$
	Hence, $\sqrt{529} = 23$	Therefore, $\sqrt{100} = 10$
Q.13 :	Find the length of the side of a squar whose area is 441m ² .	Hence, AC = 10cm
Ans :	Are of the square = 441 m^2	OR
	Length of the side of the square = $\sqrt{441}$	Write a Pythagorean triplet whose one member is 6.
	(: Side of square = $\sqrt{\text{Area}}$) By Division Method	Ans : Let $2m = 6$ $m = \frac{6}{2} = 3$
	$\begin{array}{c c} \hline & 21\\ \hline 2 & 441 \end{array}$	$\therefore m^2 - 1 = 3^2 - 1 = 9 - 1 = 8$
	$\frac{+2}{41} - \frac{4}{041}$	and $m^2 + 1 = 3^2 + 1 = 9 + 1 = 10$
	$\frac{-41}{0}$	So, a pythagorean triplet, whose one member is 6, is 6, 8, 10

	Section D (Each 4 Marks)
Q.15 :	Find the smallest square number that is divisible by each of the number 4, 9 and 10.
Ans :	The least number divisible by each one of 4, 9 and 10 is their LCM. The LCM 4, 9, and 10 is 180 Now, Prime factorisation of 180 is $180 = 2 \times 2 \times 3 \times 5$
	$ \frac{2 4,9,10}{2 2,9,5} \\ \frac{3 1,9,5}{3 1,3,5} \\ \frac{5 1,1,5}{ 1,1,1} $
	$LCM = 2 \times 2 \times 3 \times 3 \times 5$ $= 180$
	The Prime factor 5 is not in pair, Therefore 180 is not a perfect square.
	In Order to get a perfect square each factor of 180 must be paired. so we need to make pair of 5.
	Therefore, 180 shoud be multiplied by 5
	Hence, the required smallest square number is $180 \times 5 = 900$
Q.16 :	A garden has 1000 plants. He wants to plant these in such a way that the number of row and the number of columns remain same. Find the minimum number of plants he needs more for this.
Ans :	Let the number of rows be x
	Then the number of columns is x
	Let us find out the square root of 1000 by division method. $ \begin{array}{r} 3 \\ \hline 3 \\ \hline 1000 \\ +3 \\ \hline -9 \\ \hline 61 \\ \hline 100 \\ +1 \\ \hline -61 \\ \hline 39 \\ \end{array} $

This shows that $31^2 < 1000$ Next perfect square number is $32^2 = 1024$

Hence, the minimum number of plants he needs more for this = 1024 - 1000

So, number of rows = number of columns

=32

OR

There are 500 Children in a school for a P.T. drill they have to stand in such a manner that the number of rows is equal to number of columns. How many children would be left out in this arrangement?

Ans : Let us find out the square root of 500 by division method

We get the remainder 16, It shows that $22^2 < 500$ by 16

This means that 16 Children would be left out in this arrangement
