| SHIKSHA CLASSES                                        |                                                                                             |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                        |                                                                                             |
|                                                        |                                                                                             |
| Subject : Algebra Answer Paper Total Marks : 20        |                                                                                             |
| Class : X 3. Arithmetic Progression                    |                                                                                             |
| Q.1 A) Choose the correct alternatives of the          | $\therefore$ By defination of A. P. the difference bet <sup>n</sup> two                     |
| following questions. 2                                 | consecutive term is common i.e. 2                                                           |
| 1) In an A. P. the common difference denoted           | $\therefore$ The given sequence is A. P. and common                                         |
| is by 'd'                                              | difference is 2.                                                                            |
| Ans:d) All the above.                                  | 2) Which term of the following A. P. is 560?                                                |
| 2) The fifth term of an A. P. is                       | 2, 11, 20, 29                                                                               |
| 1 1 1 1                                                | Ans. : Given A. P. is                                                                       |
| $\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}$ | 2, 11, 20, 29                                                                               |
|                                                        | $\therefore$ n <sup>th</sup> term of this A. P. is 560                                      |
| <b>Ans:</b> b) $\frac{1}{162}$                         | $t_n = a + (n-1) d$                                                                         |
| 162                                                    | $\therefore 560 = 2 + (n-1) \times 9$                                                       |
| B) Define sequence with example.                       |                                                                                             |
| Ans:Sequence : It is defined as, a set of numbers      | $\therefore 560 = 2 + 9n - 9$                                                               |
| where the numbers are arranged in a definite           | $\therefore 560 = 2 - 9 + 9n$                                                               |
| order is called sequence. e.g.4, 8, 12, 16             | $\therefore 560 = -7 + 9n$                                                                  |
| Q.2A): Attempt Any ONE of the following. 2             | $\therefore 560 + 7 = 9n$                                                                   |
| 1) Write whether the following sequences is            | $\therefore 567 = 9n$                                                                       |
| in A. P. ? If it is in A. P. find the common           |                                                                                             |
| difference.                                            | $\therefore \frac{567}{9} = n$                                                              |
| i) 2, 4, 6, 8                                          | 9                                                                                           |
| Ans: Given Sequence is,                                | $\therefore$ n = 63                                                                         |
| 2, 4, 6, 8,                                            | =[05]                                                                                       |
| : $t_1 = 2, t_2 = 4, t_3 = 6, t_4 = 8$                 | $\therefore 63^{rd}$ term of given A. P. is 560                                             |
| $\therefore t_2 - t_1 = 4 - 2 = 2$                     | Q. 2 B) : Attempt Any ONE of the following. 2                                               |
| : $t_2 - t_1 = 4 - 2 = 2$<br>$t_3 - t_2 = 6 - 4 = 2$   | 1) The first term 'a' and common difference<br>'d' are given. Find first four terms of A.P. |
| $t_4 - t_3 = 8 - 6 = 2$                                | a = -3, $d = 4$ .                                                                           |

Ans. Given a = -3, d = 4 $\therefore t_n = a + (n-1) \times d$  $t_1 = -3$  $101 = 1 + (n-1) \times 2$  $t_{2} = t_{1} + d = -3 + 4 = 1$ 101 = 1 + 2n - 2 $t_3 = t_2 + d = 1 + 4 = 5$ 101 = 1 - 2 + 2n $t_4 = t_2 + d = 5 + 4 = 9$ 101 = -1 + 2n101 + 1 = 2n: A.P. is -3, 1, 5, 9 102 = 2n2) Find t<sub>n</sub> for following A.P.  $\frac{102}{2} = n$ 3, 8, 13, 18, ..... **Ans.** Given A.P. is 3, 8, 13, 18, .....  $\therefore$  n=51 Here a = 3, d = 8 - 3 = 5 $t_n = a + (n-1) \times d$  $\therefore$  From eq<sup>n</sup>(1)  $= 3 + (n-1) \times 5$  $Sn = n^2$ = 3 + 5n - 5 $\therefore S_{51} = (51)^2 = 2601$  $t_n = 5n - 2$  $\therefore$  t<sub>n</sub> = 5n - 2 : The sum of the first n odd natural numbers is  $n^2$ ;  $S_{51} = 2601$ Q.3 A): Attempt Any ONE of the following. 3 1) Find the sum of the first 'n' odd natural 2) Sum of first 55 terms in an A. P. is 3300, numbers. Hence find 1 + 3 + 5 + -- + 101. Find it's 28th term. Ans.: 1, 3, 5 ----- are the odd natural numbers **Ans:**  $S_n = S_{55} = 3300$  $\therefore$  t<sub>1</sub> = a = 1, d = 2;  $\therefore S_n = \frac{n}{2} \Big[ 2a + (n-1) \times d \Big]$  $\therefore \mathbf{S}_{n} = \frac{n}{2} \Big[ 2a + (n-1) \times d \Big]$  $\therefore = \frac{55}{2} \left[ 2a + \left[ (55-1) \right] \times d \right]$  $=\frac{n}{2}\left[2\times 1+(n-1)\times 2\right]$  $=\frac{55}{2}[2a+54d]$  $=\frac{n}{2}\left[2+(n-1)\times 2\right]$  $\therefore \boxed{3300} = \frac{55}{2} \times 2[a + 27d]$  $=\frac{n}{2}\left[\mathcal{Z}+2n-\mathcal{Z}\right]$  $\therefore 3300 = 55(a + 27d)$  $\therefore a + 27d = 60$  $=\frac{n}{2}\times 2n$  $\therefore a + 27d = 60 \tag{1}$  $\therefore$  We have to find out  $t_{28}$  $\therefore S_n = n \times n = n^2$  (1)  $t_n = a + (n - 1) \times d$ Now,

If 301 is n<sup>th</sup> term then.  $\therefore t_{28} = a + (28 - 1) \times d$  $t_n = a + (n-1) \times d = 301$  $t_{28} = a + 27d$  $\therefore 301 = 5 + (n-1) \times 6$ = 5 + 6n - 6From  $eq^n(1)$ 6n = 301 + 1 = 302 $\therefore a + 27d = 60$  $\therefore$  n =  $\frac{302}{6}$ . But it is not an integer  $\therefore t_{28} = 60$  $\therefore$  The 28th term is 60.  $\therefore$  301 is not in the given sequence. B) Attempt Any ONE of the following. 3 Q.4: Attempt Any ONE of the following. Thetaxi fareis ₹14 for the first kilometere 1) 1) Find four consecutive terms in an A. P. and ₹ 2 for each additional kilmetere. whose sum is 12 and sum of 3rd and 4th term What will be the fare for 10 kilometers? is 14. Ans: The increase in fare for each additional Ans.: Let the four consecutive tems in an A. P. be kilometere is₹2 a-3d, a-d, a + d and a + 3d $\therefore d = 2$ By first condition. *.*. The fare for the first kilometere is ₹ 14 (a-3d) + (a-d) + (a+d) + (a+3d) = 12 $\therefore a = 14$ a - 3d + a - a + a + a + a + 3d = 12 $\therefore$  We have to find the fare for 10 kilometers a + a + a + a = 12i.e.  $t_{10} = ?$  $\therefore$  4a = 12  $\therefore t_n = a + (n-1)d$  $a = \frac{12}{\cancel{4}}$  $\therefore t_{10} = 14 + (10 - 1) \times 2$  $=14+9\times 2$ =14+18 $\therefore a = 3$  $:: t_{10} = 32$  $\therefore$  By second condition ∴ The fare for 10 km will be ₹ 32. (a+d)+(a+3d)=142) Check whether 301 is in sequence. a + d + a + 3d = 145, 11, 17, 23, .....? Ans.: In the sequence 5, 11, 17, 23, ..... 2a + 4d = 14 $t_1 = 5, t_2 = 11, t_3 = 17, t_4 = 23$  $t_2 - t_1 = 11 - 5 = 6$  $a+2d=\frac{14}{2}$  $t_3 - t_2 = 17 - 11 = 6$  $\therefore$  This sequence is an A.P. First term a = 5 and d = 6.

 $a + 9 \ge 2 = 25$ a + 2d = 7a + 18 = 25 $\therefore$  Put a = 3 in a + 2d = 7 a = 25 - 18 = 7 $\therefore a + 2d = 7$  $\therefore a = 7$ 3 + 2d = 7 $\therefore$  t<sub>n</sub> = a + (n-1) x d 2d = 7-3 $\therefore t_{38} = 7 + (38 - 1) \times 2$ 2d = 4 $= 7 + 37 \ge 2$ d = 2 $t_{38} = 7 + 74$ Substituting a = 3 and d = 2 in the four terms. *.*.  $\therefore t_{38} = 81$ a -3d = 3 - 3 x 2 = 3 - 6 = -3  $\therefore$  n<sup>th</sup> term is 99 a - d = 3 - 2 = 1 $\therefore t_n = a + (n-1) x d$ a + d = 3 + 2 = 599 = 7 + 2n - 2 $a + 3d = 3 + 3 \times 2 = 3 + 6 = 9$ 99 = 5 + 2n99 - 5 = 2nThe four consecutive terms are -3, 1, 5 and 9  $\therefore 2n = 94$ 2) The 10<sup>th</sup> term and 18<sup>th</sup> term of an A. P. are 25 and 41 respectively then find 38<sup>th</sup> term  $\therefore n = \frac{94}{2}$ of that A. P. similarly if n<sup>th</sup> term is 99. Find the value of n.  $\therefore$  n = 47 Ans: In Given A. P.  $\therefore$  38<sup>th</sup> term is 81 and 99 is the 47<sup>th</sup> term  $t_{10} = 25$  and  $t_{18} = 41$  $t_n = a + (n-1) x d$ Q.5: Attempt Any ONE of the following.  $\therefore t_{10} = a + (10-1) x d$ 1) How many three digit Natural numbers are  $\therefore 25 = a + 9d \tag{1}$ divisible by four? Similarly  $t_{18} = a + (18-1) x d$ Ans: The smallest and the biggest three digit numbers 41 = a + 17d (2) divisible by four are 100 and  $\therefore$  From eq<sup>n</sup> (1) 996 respectively 25 = a + 9d: The A. P. becomes, 25 - 9d = a100, 104, 108, ---- 996 Put a = 25 - 9d in eq<sup>n</sup> (2)  $\therefore$  a = 100; d = 4, t<sub>n</sub> = 996  $\therefore a + 17d = 41$  $\therefore$  t<sub>n</sub> = a + (n-1) x d  $\therefore 25 - 9d + 17d = 41$  $\therefore$  996 - 100 = (n-1) x 4 25 + 8d = 41896 = 4n-4 $\therefore 8d = 41 - 25$ 896 + 4 = 4n:: 8d = 16900 = 4n $\therefore$  Put d = 2 in eq<sup>n</sup> (1)  $\frac{900}{4} = n$ a + 9d = 25

3

 $\therefore$ n=225

There are 225 three - digit natural numbers divisible by 4.

- 2) Find three consecutive terms in an A. P. whose sum is -3 and the product of their cubes is 512.
- Ans.: Let the three consecutive terms be a - d, a and a + d $\therefore$  by first condition, (a - d) + a + (a + d) = -3a - a + a + a + a + a = -3a + a + a = -3 $a = \frac{-3}{3}$  $\therefore a = -1$  $\therefore$  By second condition.  $(a-d)^{3} \times a^{3} \times (a+d)^{3} = 512$ Put a = -1 in above  $eq^n$  $\therefore (-1-d)^3 \times (-1)^3 \times (-1+d)^3 = 512$  $\therefore [(-1)(-1-d)]^3 (-1+d)^3 = 512$  $\therefore (1+d)^3 (-1+d)^3 = 512$  $(1+d)^{3}(-1+d)^{3} = (8)^{3}$ Taking cube root on both sides (1+d)(-1+d) = 8 $(d)^2 - (1)^2 = 8$  $\therefore d^2 - 1 = 8$  $d^2 = 8 + 1$  $d^2 = 9$  $\therefore d=\pm 3$ Taking a = -1 and d = 3 $\therefore (a-d) = -1 - 3 = -4; a = -1$ a + d = -1 + 3 = 2
- $\therefore$  The terms are 4, -1 and 2 Now, Taking a = -1 and d = -3(a-d)=-1-(-3)=-1+3=2a = -1 a + d = -1 - 3 = -4 $\therefore$  The three consecutive terms are -4, -1 and 2 OR 2, -1 and -4 \*\*\*

