

Q. 2 : B) Solve Any ONE of the following. (2) 1) Write the following quadratic equation in standard form. $3m^2 = 2m^2 - 9$ $x^2 - 9 = 13$. $x^2 - 9 = 13$ **Ans.**: $3m^2 = 2m^2 - 9$ $x^2 = 13 + 9$ $=3m^2 - 2m^2 + 9 = 0$ $x^2 = 22$ $= m^2 + 9 = 0$ $x^2 - 22 = 0$ 2) Factorise $m^2 - 14m + 13 = 0$. **Ans.** : $m^2 - 14m + 13 = 0$ $m^2 - 13m - m + 13 = 0$ m(m-13)-1(m-13)=0(m-13)(m-1)=0 $\cdot m = 13 \text{ or } m = 1.$ Q.3: A) Solve Any ONE of the following. (3) 1) Form the quadratic equation from the roots given below. $2-\sqrt{5}$, $2+\sqrt{5}$ **Ans.** : Consider $\alpha = 2 - \sqrt{5}$ $\beta = 2 \pm \sqrt{5}$ But we know that, $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ (1) $\therefore \alpha + \beta = (2 - \sqrt{5}) + (2 + \sqrt{5})$ $=2-\sqrt{5}+2+\sqrt{5}$ numbers. = 2 + 2 = 4 $\therefore \alpha + \beta = 4$ $\alpha \times \beta = (2 - \sqrt{5}) \times (2 + \sqrt{5})$ $=(2)^2 - (\sqrt{5})$ Х = 4 - 5 = -1 $\therefore \alpha \times \beta = -1$ \therefore Put the values of $\alpha + \beta$ and $\alpha \times \beta$ in eqⁿ (1) $\therefore x^2 - (\alpha + \beta)x + \alpha\beta = 0$

 $x^2 - 4x - 1 = 0$ \therefore Required quadratic eqⁿ is $x^{2} - 4x - 1 = 0$ 2) If α and β are roots of $y^2 - 2y - 7 = 0$ then find 1) $\alpha^2 + \beta^2$ **2)** $\alpha^{3} + \beta^{3}$ **Ans.**: $v^2 - 2v - 7 = 0$ Comparing with $ax^2+bx+c=0$ a = 1, b = -2, c = -7 $\therefore \alpha + \beta = \frac{\boxed{-b}}{\boxed{a}} = \frac{\boxed{-(-2)}}{\boxed{1}} =$ $\therefore \alpha \times \beta = \frac{|c|}{|a|} = \frac{|-7|}{|1|} = -7$ 1) $\alpha^2 + \beta^2 = \left[\left(\alpha + \beta \right)^2 \right] - 2 \alpha \beta$ $=(2)^2 - 2 \times (-7)$ =4+14=18 $\therefore \alpha^2 + \beta^2 = 18$ 2) $\alpha^3 + \beta^3 = \overline{(\alpha + \beta)^3} - 3\alpha\beta(\alpha + \beta)$ $=(2)^{3}-3(-7)(2)$ =8+42 $\alpha^3 + \beta^3 = 50$ Q.3: B) Solve Any ONE of the following. (3) 1) The sum of the squares of two consecutive even natural numbers is 100 then find the **Ans.**: Let the two consecutive even natural numbers be x and x + 2

: By given condition. $x^{2} + (x+2)^{2} = 100$

$$x^2 + x^2 + 4x + 4 = 100$$

$$2x^2 + 4x + 4 - 100 = 0$$

$$\therefore 2x^2 + 4x - 96 = 0$$

 \therefore Divide by 2

$$x^2 + 2x - 48 = 0$$

 $x^{2} + 8x - 6x - 48 = 0$ $\therefore x(x+8)-6(x+8)=0$ (x+8)(x-6)=0(x+8) = 0 or (x-6) = 0x = -8 or x = 6 \therefore But - 8 is not a natural no. $\therefore x = 6$ $\therefore x + 2 = 6 + 2 = 8$ \therefore The required numbers are 6 and 8 2) Solve quadratic equation by using formula method. $m^2 - 14m + 13 = 0$ **Ans.** : $m^2 - 14m + 13 = 0$ comparing with $ax^2 + bx + c = 0$ we get a = 1, b = -14, c = 13 $\therefore b^2 - 4ac = (-14)^2 - 4 \times 1 \times 13$ = 196 - 52= 144 $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $=-\frac{(-14)\pm\sqrt{144}}{2\times 1}$ $=\frac{14\pm12}{2}$ $\therefore m = \frac{14+12}{2} \text{ or } m = \frac{14-12}{2}$ $\therefore m = \frac{26}{2} \text{ or } m = \frac{3}{2}$ \therefore m = 13 or m = 1 : 13 and 1 are roots of equation. Q.4: Attempt any ONE of the following. (4) 1) Solve by completing square method $5x^2 - 4x - 3 = 0$ **Ans.**: $5x^2 - 4x - 3 = 0$ Divide by 5,

 $\frac{\cancel{5}x^2}{\cancel{5}} - \frac{4x}{5} - \frac{3}{5} = 0$ $\therefore x^2 - \frac{4}{5}x - \frac{3}{5} = 0$ If $x^2 - \frac{4}{5}x + k = (x - a)^2$ then $x^2 - \frac{4}{5}x + k = x^2 - 2ax + a^2$ Comparing the terms $x^2 - \frac{4}{5}x$ and $x^2 - 2ax$ $\therefore -2a \not = -\frac{4}{5} \not =$ $+2a = +\frac{4}{5}$ $a = \frac{A^2}{5} \times \frac{1}{2} = 2/5$ and $k = a^2 = \left(\frac{2}{5}\right)^2 = \frac{4}{25}$ Now, $x^2 - \frac{4}{5}x - \frac{3}{5} = 0$ $\therefore x^2 - \frac{4}{5}x + \frac{4}{25} - \frac{4}{25} - \frac{3}{5} = 0$ $\therefore \left(x - \frac{2}{5}\right)^2 - \frac{4}{25} - \frac{3}{5} = 0$ $\therefore \left(x - \frac{2}{5}\right)^2 - \left(\frac{4}{25} + \frac{3}{5}\right) = 0$ $\therefore \left(x - \frac{2}{5}\right)^2 - \left(\frac{19}{25}\right) = 0$ $\therefore \left(\mathbf{x} - \frac{2}{5} \right)^2 = \left(\frac{19}{25} \right)$ Taking square root on both sides,

$$\therefore \left(x - \frac{2}{5}\right) = \pm \frac{\sqrt{19}}{5}$$
$$\therefore \left(x - \frac{2}{5}\right) = \frac{\sqrt{19}}{5} \text{ or } \left(x - \frac{2}{5}\right) = \frac{-\sqrt{19}}{5}$$

$$\therefore x = \frac{2 + \sqrt{19}}{5} \text{ or } x = \frac{2 - \sqrt{19}}{5}$$
Ans: Comparing $x^2 - 13x + k = 0$ with $x^2 + bx + c = 0$
 $a = 1, b = -13, c = k$
Let $\alpha \& \beta$ roots at the equation.
 $\alpha + \beta = \frac{-b}{a} = -\frac{(-13)}{1} = 13$ $---(i)$
But $\alpha - \beta = 7, ---(i)$
But $\alpha - \beta = 3$
 $\therefore 10 \times 3 = \frac{k}{1}$
 $\therefore x^2 - 8x + 16 = (3^2 x)$
 $\therefore x^2 - 8x + 16 = (3^2 x)$
 $\therefore x^2 - 8x + 16 = (3^2 x)$
 $\therefore x^2 - 8x + 16 = (3^2 x)$
 $\therefore x^2 - 8x + 16 = (3^2 x)$
 $\therefore x^2 - 8x + 16 = 0$
 $x(x - 1) - 16(x - 1) - 0$
 $x = 1 \text{ or } x = 16$
Now, if $x = 1$ the square root is 1
 $\therefore 1$ channot be grater than three times is is
square root by 4
 $\therefore x \neq 1 \therefore x = 16$
Now, if $x = 1$ the matural number is 16.
Q. 5: Solve Any ONE of the following. (3)
1) The difference between the roots of equation
 $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x + k = 0$ is 7. Find k.
Ans.: Comparing $x^2 - 13x +$

