

SHIKSHA CLASSES

Sub.:	Maths.
Std. X	(CBSE)

Answer Paper 2 : Polynomials.

/1111a1.5•		
Q.8	:	If $x^3 + 11$ is divided by $x^2 - 3$, then the possible degree of remainder is
Ans.	:	d) less than 2
Q.9	:	The number of polynomials having zeroes as -2 and 5 is.
Ans.	:	d) more than 3
S		For question number 10 to 11 two statements are given one labeled Assertion and other labeled Reason select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below
Q.10	:	Assertion: $x^2 + 7x + 12$ has no real zeroes.
		Reason: A quadratic polynomial can have at the most two zeroes.
Ans.	:	d) Assertion (A) is false but reason (R) is true.
Q.11	:	Assertion: If one zero of polynomial $p(x) = (k^2+4)x^2+13x+4k$ is reciprocal of the other, then $k = 2$.
		Reason: If $(x-a)$ is a factor of $p(x)$, then p(a) = 0 i.e., a is a zero of $p(x)$.
Ans.	:	b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
		Section : B (Each 2 Marks)
Q.12	:	Find the zeroes of polynomial x ² –3 and verify the relationship between the zeroes and the coefficients.

Total Marks : 30

Ans. : Polynomial $x^2 - 3 = x^2 - 0x - 3$

$$=(x-\sqrt{3})(x+\sqrt{3})$$

The value of $x^2 - 3$ is zero when $x - \sqrt{3} = 0$ or $x + \sqrt{3} = 0$ i.e. when $x = \sqrt{3}$ or $x = -\sqrt{3}$ Therefore, the zeroes of $x^2 - 3$ are $\sqrt{3}$ and $-\sqrt{3}$, sum of zeroes $=\sqrt{3}-\sqrt{3}=0=\frac{-0}{1}=\frac{-(\text{coeff.of }x)}{\text{coeff.of }x^{2}}$ Product of zeroes = $=\sqrt{3}\times-\sqrt{3}=-3=\frac{-3}{1}=\frac{\text{constant term}}{\text{coeff of }x^2}$ **Q.13** : If α and β are zeroes of the quadratic polynomial $f(x) = x^2 - x - 4$ find the value of $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$ Ans. : α and β are zeroes of the quadratic polynomial $f(x) = x^2 - x - 4$ $\therefore \quad \alpha + \beta = -\frac{(-1)}{1} = 1$ $\alpha\beta = \frac{-4}{1} = -4$ Now $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta = \frac{\alpha + \beta}{\alpha\beta} - \alpha\beta$ $\frac{1}{4} + 4 = \frac{15}{4}$ OR If the sum of the zeroes of the

If the sum of the zeroes of the quadratic polynomial $kx^2 + 3x + 5k$ is equal to their product find the value of k.

Ans. : $p(x) = kx^2 + 3x + 5k$ Here, a = k, b = 3, and c = 5k Let α, β be the zeroes of the polynomial

$$\alpha + \beta = \alpha\beta \quad \text{---(given)}$$

$$\therefore \quad \frac{-b}{a} = \frac{c}{a}$$

$$\therefore \quad -b = c$$

$$\therefore \quad -3 = 5k$$

$$\therefore \quad k = \frac{-3}{5}$$

Section : C (Each 3 Marks)

- Q.14 : Compute the zeroes of the polynomial $4x^2 4x 8$. Also, establish a relationship between the zeroes and coefficients.
- Ans. : Let the given polynomial be

$$p(x) = 4x^2 - 4x - 8$$

To find the zeroes, take p(x) = 0

- Now, factorise the equation
 - $4x^{2}-4x-8=0$ $4x^{2}-4x-8=0$ $4(x^{2}-x-2)=0$ $x^{2}-x-2=0$ $x^{2}-2x+x-2=0$ x(x-2)+1(x-2)=0 (x-2)(x+1)=0 x=2, x=-1

So, the roots of $4x^2 - 4x - 8$ are -1 and 2. Relation between the sum of zeroes and coefficients:

-1 + 2 = 1 = -(-4)/4 i.e.

 $(-\text{coefficient of } x/\text{ coefficient of } x^2)$

Relation between the product of zeroes and coefficients:

 $(-1) \times 2 = -2 = -8/4$ i.e (constant/ coefficient of x²).

Q.13 .	α and β are zeroes of the quadratic polynomial $x^2 - 6x + y$. Find the value of 'y' if $3\alpha + 2\beta = 20$.	
Ans. :	Let, $f(x) = x^2 - 6x + y$	
	From the given,	
	$3\alpha + 2\beta = 20$ (i)	
	From f(x),	
	$\alpha + \beta = 6$ (ii)	
	And,	
	$\alpha\beta = y$ (iii)	Q.16
	Multiply equation (ii) by 2. Then, subtract the whole equation from equation (i),	
	$\Rightarrow \alpha = 20 - 12 = 8$	
	Now, substitute this value in equation (ii),	
	$\Rightarrow \beta = 6 - 8 = -2$	
	Substitute the values of α and β in equation (iii) to get the value of y, such as;	Ans.
	$y = \alpha \beta = (8)(-2) = -16$.	
	OR	3
	Find a quadratic polynomial, the sum and product of whose zeroes are	
	sum und product of whose zeroes are	
	0 and $\frac{-3}{5}$ respectively. Hence find	
	0 and $\frac{-3}{5}$ respectively. Hence find the zeroes.	
Ans. :	0 and $\frac{-3}{5}$ respectively. Hence find the zeroes. Quadratic polynomial = $x^2 - (Sum)x +$ Product	
Ans. :	0 and $\frac{-3}{5}$ respectively. Hence find the zeroes. Quadratic polynomial = $x^2 - (Sum)x +$ Product = $x^2 - (0)x + \left(\frac{-3}{5}\right) = x^2 - \frac{3}{5}$	
Ans. :	Sum and product of whose zeroes are 0 and $\frac{-3}{5}$ respectively. Hence find the zeroes. Quadratic polynomial = $x^2 - (Sum)x +$ Product $= x^2 - (0)x + \left(\frac{-3}{5}\right) = x^2 - \frac{3}{5}$ $= (x)^2 - \left(\sqrt{\frac{3}{5}}\right)^2 = \left(x - \sqrt{\frac{3}{5}}\right) \left(x + \sqrt{\frac{3}{5}}\right)$	
Ans. :	Sum and product of whose zeroes are 0 and $\frac{-3}{5}$ respectively. Hence find the zeroes. Quadratic polynomial = x ² - (Sum)x + Product = x ² - (0)x + $\left(\frac{-3}{5}\right) = x^2 - \frac{3}{5}$ = $(x)^2 - \left(\sqrt{\frac{3}{5}}\right)^2 = \left(x - \sqrt{\frac{3}{5}}\right)\left(x + \sqrt{\frac{3}{5}}\right)$ Zeroes are, $x - \sqrt{\frac{3}{5}} = 0$ or $x + \sqrt{\frac{3}{5}}$	
Ans. :	Sum and product of whose zeroes are 0 and $\frac{-3}{5}$ respectively. Hence find the zeroes. Quadratic polynomial = x ² - (Sum)x + Product = x ² - (0)x + $\left(\frac{-3}{5}\right) = x^2 - \frac{3}{5}$ = (x) ² - $\left(\sqrt{\frac{3}{5}}\right)^2 = \left(x - \sqrt{\frac{3}{5}}\right)\left(x + \sqrt{\frac{3}{5}}\right)$ Zeroes are, $x - \sqrt{\frac{3}{5}} = 0$ or $x + \sqrt{\frac{3}{5}}$ $\Rightarrow x = \sqrt{\frac{3}{5}}$ or $x = -\sqrt{\frac{3}{5}}$	

$$\Rightarrow x = \sqrt{\frac{3}{5} \times \frac{5}{5}} \text{ or } x = -\sqrt{\frac{3}{5} \times \frac{5}{5}}$$

$$\Rightarrow x = \frac{\sqrt{15}}{5} \text{ or } x = \frac{-\sqrt{15}}{5}$$
The zeroes are $= \frac{\sqrt{15}}{5}$ and $\frac{-\sqrt{15}}{5}$.
Section - D(Each 5 Marks)
6 : If α and β are zeroes of the polynomial $\mathbf{p}(\mathbf{x}) = 2\mathbf{x}^2 - 7\mathbf{x} + \mathbf{k}$
satisfying the condition
 $\alpha^2 + \beta^2 + \alpha\beta = \frac{67}{4}$, then find value of
 \mathbf{k} for this to be possible.
 $\therefore \mathbf{p}(\mathbf{x}) = 2\mathbf{x}^2 - 7\mathbf{x} + \mathbf{k}$
Here, $\mathbf{a} = 2$, $\mathbf{b} = -7$ and $\mathbf{c} = \mathbf{k}$
 $\alpha^2 + \beta^2 + \alpha\beta = \frac{67}{4}$
 $\therefore [(\alpha + \beta)^2 - 2\alpha\beta] + \alpha\beta = \frac{67}{4}$
 $\therefore (\alpha + \beta)^2 - \alpha\beta = \frac{67}{4}$
 $\therefore (\alpha + \beta)^2 - \alpha\beta = \frac{67}{4}$
 $\therefore (\frac{-\mathbf{b}}{\mathbf{a}})^2 - \frac{\mathbf{c}}{\mathbf{a}} = \frac{67}{4}$
 $\therefore \frac{(-7)^2}{2^2} - \frac{\mathbf{k}}{\mathbf{a}} = \frac{67}{4}$
 $\therefore \frac{49}{4} - \frac{\mathbf{k}}{2} = \frac{67}{4}$
 $\therefore \frac{-18}{4} = \frac{\mathbf{k}}{2}$
 $\therefore -36 = 4\mathbf{k}$
 $\therefore \mathbf{k} = -9$

$$= -16 + 24 + 16$$

$$= 24.$$
OR
If one of the zero is 4 and sum of
zero zero is -3, then find the
rcpresentation of tunnel as a
polynomial.
Ans. : One of the zero z= 4
sum of zero z= -3
So, other zero z= -3 - 4 = -7
Thus product of zero z= 4 × -7 = -28
Therefore, the required polynomial
$$= -[x^{2} - (-3)x - 28]$$

$$= -x^{2} - 3x + 28.$$
* * *

