

			wer Paper 15. Area	· Marks : 20
Std. Q.1 Ans Ans	: 1) : 2) : 1) : 1)	 ∨ III th - S.B. A) Select the most appropriate Alternative. If the radius of a circle is 21 cm, the area of the circle is. 	15. Area 02 2) hen Ans 01 bus are 1) Ans 01 bus are 1) Ans 02 le is	$= 66 \times \boxed{21} = 1386 \text{ sq cm.}$ Fill in the blanks : Lengths of the diagonals of a rhombus are 11.2 cm and 7.5 cm respectively. Find the area of rhombus. Area of a rhombus $= \frac{1}{2} \times \boxed{\text{product of the lengths of diagonals}}$ $= \frac{1}{2} \times \boxed{11.2} \times \boxed{7.5}$ $= \boxed{42} \text{ sq cm}$ B) Solve any one of the following. 02 Find the area of the circle if its circumference of the circle = 88 cm. Circumference of the circle = 2 π r $\therefore 88 = 2 \times \frac{22}{7} \times r$ $\therefore r = \frac{88 \times 7}{2 \times 22}$ $\therefore r = 14$ cm Area of the circle $= \pi r^2$
	Ċ	$= \frac{22}{7} \times \boxed{21^2}$ $= \frac{22}{7} \times \frac{\boxed{21}}{1} \times \frac{\boxed{21}}{1}$		$= \frac{22}{7} \times 14 \times 14$ $= 616 \text{ sq cm}$

In ΛI NO, side LN is the base and l(OP)is the height. We will find the area of ALNO . Semiperimeter of ΛLMN , $s = \frac{60+60+96}{2} = \frac{216}{2} = 108 \text{ m}$ ∴ Area of ∆LMN $=\sqrt{108(108-60)(108-60)(108-96)}$ $=\sqrt{108\times48\times48}\times12$ $=\sqrt{12\times9\times48\times48}\times12$ $A(\Delta LMN) = 12 \times 3 \times [48] = [1728] \text{ sq m}$ $A(\Delta LNO) = \frac{1}{2} base \times height$ $=\frac{1}{2}\times96\times70$ $= 96 \times \overline{35} = 3360 \text{ sq m}$ Area of \Box LMNO = A (Δ LMN) + $A(\Delta LNO)$ = 1728 + 3360 = 5088 sq m \therefore Area of the plot LMNO is 5088 sq m 2) Some measures are given in the adjacent figure, find the area of DABCD. 40 m 13 m 60 m l(BA) = 40 m, l(AD) = 9 m,l(DC) = 60 m and l(BT) = 13 m. $A(\Delta BAD) = \frac{1}{2} \times l(BA) \times l(AD)$

Ans : Clearly, Diameter the circle = Diagonal BD of rectangle ABCD \therefore Diameter = BD = $\sqrt{BC^2 + CD^2}$ $=\sqrt{6^2+8^2}\,\mathrm{cm}$ $=\sqrt{100} = 10 \text{ cm}$ Let r be the radius of the circle, then, $r = \frac{10}{2} \text{ cm} = 5 \text{ cm}.$ Area of rectangle ABCD = AB \times BC $=(8 \times 6) \text{ cm}^2$ $=48 \text{ cm}^2$ Area of the circle $=\pi r^2$ $=3.14\times(5)^2$ cm² $= 78.50 \text{ cm}^2$ Hence, Area of the shaded region = Area of the circle - Area rectangle ABCD $=(78.50 - 48) \text{ cm}^2$ $= 30.50 \text{ cm}^2$ 2) Adjacent figure is a polygon ABCDE. All given measures are in metre. Find the area of the given figure. E 13 17 12 P 15 16 B R 10 Ans : Here $\triangle AQB$, $\triangle ERD$ are right angled triangles and DAQRE is a trapezium. Base and height of $\triangle BCD$ is given. Now let us find the area of each figure. $A(\Delta AQB) = \frac{1}{2}l(BQ) \times l(AQ)$ $=\frac{1}{2} \times 10 \times 13 = 65$ sq m

 $A(\Delta ERD) = \frac{1}{2} l(RD) \times l(ER)$ $=\frac{1}{2} \times 16 \times 17 = 136$ sq m $A(\Box AQRE) = \frac{1}{2} [l(AQ) + l(ER)]$ $\times l(QR)$ $=\frac{1}{2}[13+17]\times(12+15)$ $=\frac{1}{2} \times 30 \times 27$ $= 15 \times 27 = 405$ sq m l(BD) = l(BP) + l(PD)= 10+12+15+16 = 53 mA(ΔBCD) = $\frac{1}{2} \times l(BD) \times l(PC)$ $=\frac{1}{2} \times 53 \times 10 = 265$ sq m : Area of polygon ABCDE $=A(\Delta AQB)+A(\Box AQRE)+$ A(AERD) + A(ABCD)= 65 + 405 + 136 + 265= 871 sq m Solve any one of the following. 03 1) The diagonal of a quadrilateral is 20m

in length and the perpendiculars to it from the opposite vertices are 8.5m and 11m. Find the area of the quadrilateral.

In quadrilateral ABCD, We have Ans :

AC = 20 m

Q.5

:

Let BL | AC and DM | AC such that BL = 8.5 m and DM = 11 m.

: Area of quadrilateral ABCD.

$$= \frac{1}{2} \times AC \times (BL + DM)$$

$$= \frac{1}{2} \times 20 \times (8.5 + 11) m^{2}$$

$$= 10 \times 19.5 m^{2}$$

$$= 195 m^{3}$$
2) Area of a rhombus is 96 sq cm. One of the diagonals is 12 cm find the length of its side.
Ans : Let $\Box ABCD$ be a rhombus.
Diagonal BD is of length 12 cm.
Area of the rhombus is 96 sq cm.
So first find the length of diagonal AC.
Area of a rhombus = $\frac{1}{2} \times \operatorname{product}$ of lengths of diagonals
$$\widehat{Area of a rhombus} = \frac{1}{2} \times \operatorname{product}$$
 of lengths of diagonals
$$\widehat{Area of a rhombus} = \frac{1}{2} \times \operatorname{product}$$
 of lengths of diagonals
$$\widehat{Area of a rhombus} = \frac{1}{2} \times \operatorname{product}$$
 of lengths of diagonals
$$\widehat{Area of a rhombus} = \frac{1}{2} \times \operatorname{product}$$
 of lengths of diagonals
$$\widehat{Area of a rhombus} = \frac{1}{2} \times \operatorname{product}$$
 of lengths of diagonals are perpendicular bisectors of each other.
$$\widehat{Area of a rhombus} = \frac{1}{2} \times 12 = 6;$$

$$i(AE) = \frac{1}{2} i(AE) = \frac{1}{2} \times 12 = 6;$$

$$i(AE) = \frac{1}{2} i(AC) = \frac{1}{2} \times 15 = 8$$
Using Pythagoras theorem we get,
$$i(AD) = 1 \operatorname{orm}$$

$$\widehat{Area of a the rhombus is 10 \, \mathrm{cm}.$$

