

Sub. : Science Std. : X th - CBSE		Answer Paper 12. Electricity.	Marks : 30 Time : 1 Hour.
		SECTION (A)	(Each - 1 Mark)
Q.1 :	When a current I spent is given by	flows through a resistance R for tim	e 't' the electrical energy
Ans. :	b) I ² Rt		
		OR	Y
	become :	ving through a fixed resistor is halved	, the heat produced in it will
Ans. :	a) One-fourth		
Q.2 :	A wire of resistance R_1 , is cut into five equal pieces. These five pieces of wire are then connected in parallel. If the resultant resistance of this combination be R_2 , then the ratio R_1/R_2 is:		
Ans. :	d) 25	C Y	
		OR	
	energy consumed	have resistances in the ratio 1:2. If the in them is in the ratio.	ey are joined in series. the
Ans. :	b) 1:2		
Q.3 :	Assertion (A): The current flowing through each resistor is the same when connected in series.		
	Reason (R) : The voltage drop across each resistor remains the same when connected in parallel.		
Ans. :	b) Both A and R ar	A and R are true but R is not the correct explanation of the assertion.	
Q.4:	Assertion (A) : Alloys are commonly used in electrical heating devices like electric iron and heater.		
		tivity of an alloy is generally higher ys have low melting points then their c	
Ans. :	c) A is true, but R is	false.	
Q.5:	Assertion (A) : Th	e metals and alloys are good conducto	ors of electricity.
	Reason (R) : Brou electricity.	ze is an alloy of copper and tin and i	t is not a good conductor of
Ans. :	(a) Both A and R	are true and R is the correct explanation	of the assertion A.
Q.6:	You are given four	ammeters A. B, C and D having least	counts mentioned below:

I. Ammeter A with least count 0.25 A II. Ammeter B with least count 0.5 A III. Ammeter C with least count 0.05 A IV. Ammeter D with least count 0.1 A			
Which of the ammeters would you prefer for doing an experiment to determine the equivalent resistance or two resistances most accurately, when connected in parallel?			
Ans. : c) Ammeter C			
OR			
Two appliances of rating 200 watt-250 volts and 100 watt-250 volts are joined in series to a 250 volts supply. Total power consumed in the circuit is			
Ans. : b) 67 watt			
Q.7: Observe the following figure and answer any two question from 5(i) to 5(iii). (2 Mark)			
3Ω 6Ω 9Ω $220 V$			
i) In the given figure, the resistors			
Ans. : d) 3_{Ω} and 6_{Ω} are in parallel and the combination is in series with 9_{Ω}			
ii) The equivalent resistance of the figure is.			
Ans. : a) 11_{Ω}			
iii) Find the value of current flowing through the circuit.			
Ans. : a) 20 A			
Q.8: An electrical appliance has a resistance of 25 $_{\Omega}$ When this electrical appliance			
is connected to a 230 V supply line, the current passing through it will be:			
 Ans. : c) 9.2 A Q.9 : How is the resistivity of alloys compared with those of pure metals from which they may have been formed? 			
Ans. : The resistivity of an alloy is generally higher than that of its constituent metals.			
Q.10: Electrical resistivity of a given metallic wire depends upon Ans. : (d) Nature of the material			
Q.11: The resistance whose V – I graph is given below is			

b) The potential difference between the terminals of an electric heater is 60V when it draws a current of 4A from the source find the resistance of heater when in use.

Ans. : a) i) Wires crossing without touching each other

ii) Rheostat/Variable resistor

b) Given: V = 60V

$$I = 4A$$

 $R = ?$

From ohm's law

$$V = IR$$

$$60 = 4 \times R$$

$$R = \frac{60}{4} = 15\Omega$$

SECTION (C)

(Each - 3 Mark)

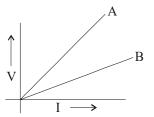
Q.17: a) Define the term 'Coulomb'

b) State the relationship between the electric current, the charge moving through a conductor and the time of flow. Calculate the charge passing through an electric bulb in 20 minutes if that value of current is 200 mA.

- Ans. : a) One Coulomb is the charge contained in 6.25 × 10¹⁸ electrons or coluomb is equal to the amount of charge from a current of one ampere flowing for one second. It is the S.I. unit of electric charge.
 - b) i) $I = \frac{Q}{t}$ where I = electric current Q = Charge moving through a conductor

t = time of flow.

- ii) Current I = $200 \text{ mA} = 200 \times 10^{-3}\text{A}$ Time, t = $20 \text{ minutes} = 20 \times 60$
 - = 1200 Seconds.


Charge, Q?

$$Q = I \times t = 200 \times 10^{-3} \times 1200$$

$$\frac{200 \,\mathrm{x} \, 1200}{1000} = 240 \mathrm{C} \,.$$

OR

: V-I graph for two wires A and B are shown in the figure. If both wires are of same length and same thickness, which of the two is made of a material of high resistivity? Give justification for your answer.

Ans.

. : Greater the slope of V-I graph greater will be the resistance of given metallic wire. In the given graph, wire A has greater slope than B. Hence wire A has greater resistance.

For the wires of same, length and same thickness, resistance depends on the nature of material of wire.

i.e.

$$R_1 = \rho_1 \frac{\ell}{A}$$
 and $R_2 = \rho_2 \frac{\ell}{A}$
 $\frac{R_1}{A} = \frac{\rho_1}{\rho_1}$ or $R \neq \rho_2$

$$\frac{1}{R_2} = \frac{r_1}{\rho_2}$$
 or R \alpha \rho

Hence wire A is made of a material of high resistivity.

- Q.18: a) Write an expression for the amount of heat produced in a wire of resistance of R and carrying a current of I for time t.
 - b) An electric heater of resistance 10 $_{\Omega}$ draws 15A from the service main for 2 hours calculate:
 - i) The heat developed in the heater and
 - ii) The power of the heater.

Ans. : a) $H = I^2 Rt$

b) i) Resistance of the heater, $R = 10\Omega$

current drawn, I=15A

Time,
$$t = 2hrs = 2 \times 60 \times 60$$

$$H = I^2 Rt$$

$$= 15 \times 15 \times 10 \times 2 \times 60 \times 60$$

$$= 162000 J$$

 $\cdot H = 162 \times 10^3 J$

ii) Power of the heater

$$\mathbf{P} = \mathbf{I}^2 \times \mathbf{R} = 15 \times 15 \times 10^{\circ}$$

$$= 2250 W$$

= 2.25KW.

SECTION (D)

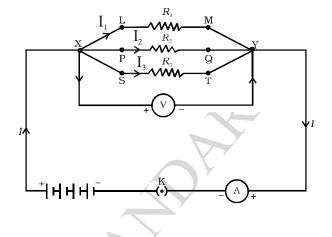
(5 Mark)

Q.19: Derive the expression to find the equivalent resistance when the resistors are connected in parallel combination.

Ans. : It is observed that the total current I, is equal to the sum of the separate currents through each branch of the combination.

 $I = I_1 + I_2 + I_3 ---(i)$

Let R_p be the equivalent resistance of the parallel combination of resistors. By applying Ohm's law to the parallel combination of resistors


$$I = \frac{V}{R_p}$$

On applying Ohm's law

$$I_1 = \frac{V}{R_1}; I_2 = \frac{V}{R_2}; \text{ and } I_3 = \frac{V}{R_3}$$

From eqn. (i)

$$\frac{V}{R_{p}} = \frac{V}{R_{1}} + \frac{V}{R_{2}} + \frac{V}{R_{3}}$$
$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

It is conclude that the reciprocal of the equivalent resistance of a group of resistances joined in parallel is equal to the sum of the reciprocals of the individual resistances.

OR

- : Three 250 watt heaters are connected in parallel to a 100 volt supply. Calculate :
 - i) the total current taken from the supply.
 - ii) the resistance of each heater.
 - iii) the energy supplied in kwh to the three heaters in 5 hours.
- Ans. : Given, power of one heater (P) = 250 watt; potential (v) = 100 volt, time(t) = 5 hours

i)
$$P = \frac{V^2}{R}$$

$$\therefore R = \frac{V^2}{P} = \frac{100 \times 100}{250} = 40\Omega$$

The three 250 watt heaters are connected in parallel then total current,

$$I = I_1 + I_2 + I_3$$

= $\frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}$
= $\frac{100}{40} + \frac{100}{40} + \frac{100}{40}$
= 2.5 + 2.5 + 2.5
= 7.5 A

Then three heaters in connection

The energy supplied to heaters

Total power consumption = 250+250+250=750W

:. Energy supplied in Kwh in 5 hours = $\frac{\text{watt} \times \text{hour}}{1000} = \frac{750 \times 5}{1000} = 3.75$ Kwh energy used in the circuit.

* * *

