

		WER PAPEF Jumber Systen		
Section A (Each 1 Marks) Multiple choice Questions (MCQs)		Q9 :	Three rational numbers between 3 and 4 are	
Q.1 : Ans.: Q.2 :	The decimal expansion of $\sqrt{2}$ is. d) Non-teminating non-recurring. Which of the following is an irrat number?	ional Foi stat	 Ans.: b) 13/4, 14/4, 15/4 For question number 10 to 11 two statement are given one labeled Assertion and other labeled Reason select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below Q.10: Assertion: every integer is a rational number 	
Ans.: Q.3 :	a) $\sqrt{23}$ The value of $(125)^{-\frac{1}{3}}$ is :	cor cod		
Ans.:	b) $\frac{1}{5}$		Reason: every integer is expressed in the form of m/1 so it is rational number	
Q.4 : Ans.:	(5 + $\sqrt{8}$) + (3 - $\sqrt{2}$) - ($\sqrt{2}$ - 6) where simplified gives : c) A positive and rational number	Ans.:	a.) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion	
Q.5 :	Find the value of $\sqrt[4]{64^{-2}}$	Q.11 :	Assertion: 0.468 is a terminating decimal.	
Ans.: Q6 :	a) $\frac{1}{8}$ When $15\sqrt{15}$ is divided by $3\sqrt{3}$	find	Reason: A decimal in which a digit or a set of digits is repeated periodically, is called a repeating, or a recurring decimal.	
Ans.: Q7 :	the quotient. c) $5\sqrt{5}$ Which of the following numbers irrational number?	Ans.: is an	 a.) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion Section B (Each 2 Marks) 	
Ans.: Q8 :	c) $\sqrt{5} + 3$ Can we write 0 in the form of p/q	Q.12:	Rationalize the denominator of	
Ans.:	a) yes	I•	$\frac{1}{\sqrt{7}-\sqrt{6}}$	

Ans:
$$\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{1}{\sqrt{7} - \sqrt{6}} \times \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}}$$

 $= \frac{\sqrt{7} + \sqrt{6}}{\left(\sqrt{7}\right)^2 - \left(\sqrt{6}\right)^2}$
 $(a + b) (a - b) = a^2 - b^2$
 $= \frac{\sqrt{7} + \sqrt{6}}{7 - 6}$
 $= \sqrt{7} + \sqrt{6}$

Q.13: Find the value of x.

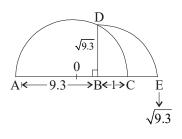
$$\left(\frac{3}{4}\right)^{3} \cdot \left(\frac{4}{3}\right)^{-7} = \left(\frac{3}{4}\right)^{2x}$$
Ans: Given: $\left(\frac{3}{4}\right)^{3} \cdot \left(\frac{4}{3}\right)^{-7} = \left(\frac{3}{4}\right)^{2x}$
i.e. $\left(\frac{3}{4}\right)^{2x} = \left(\frac{3}{4}\right)^{3} \left(\frac{4}{3}\right)^{-7}$
 $\Rightarrow \left(\frac{3}{4}\right)^{2x} = \left(\frac{3}{4}\right)^{3} \left(\frac{3}{4}\right)^{7} \left[\because \left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}\right]$
 $\Rightarrow \left(\frac{3}{4}\right)^{2x} = \left(\frac{3}{4}\right)^{10} \qquad [\because a^{m} \times a^{n} = a^{m+n}]$

comparing both sides

$$[:: a^m = a^n \text{ then } m = n]$$
$$2x = 10$$

$$\Rightarrow x=5.$$

:

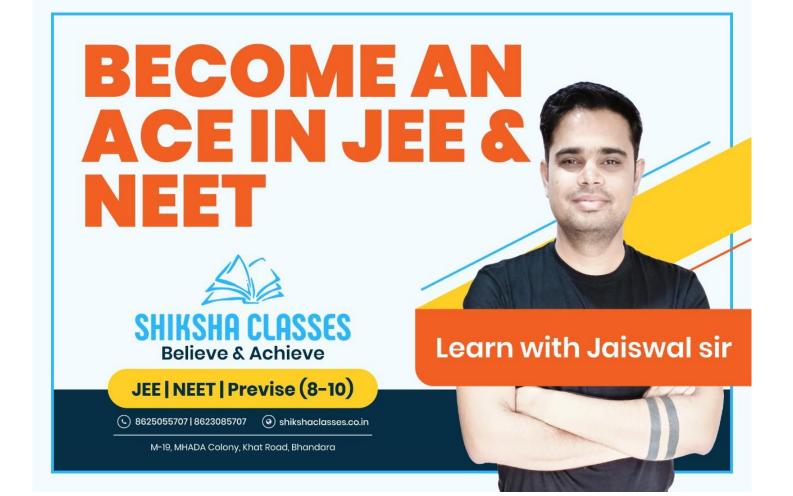

Show that
$$\frac{X^{a(b-c)}}{X^{b(a-c)}} \div \left(\frac{X^{b}}{X^{a}}\right)^{c} = 1$$

Ans: LHS
$$= \frac{x^{a(b-c)}}{x^{b(a-c)}} \div \left(\frac{x^{b}}{x^{a}}\right)^{c}$$

 $= \frac{x^{ab-ac}}{x^{ba-bc}} \times \left(\frac{x^{a}}{x^{b}}\right)^{c}$

$$= \frac{x^{ab-ac}}{x^{ab-bc}} \times \frac{x^{ac}}{x^{bc}} \quad \left[\because \left(\frac{a^{m}}{b^{i}}\right)^{n} = \frac{a^{mn}}{b^{in}}\right]$$
$$= \frac{x^{ab-ac+ac}}{x^{ab-bc+bc}} \quad \left[\because a^{m}.a^{n} = a^{m+n}\right]$$
$$= \frac{x^{ab}}{x^{ab}} = 1.$$
SECTION C
Q.14: Prove that: $\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$
Ans: LHS = $\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}}$
$$= \frac{1}{1+\frac{x^{a}}{x^{b}}} + \frac{1}{1+\frac{x^{b}}{x^{a}}} \quad \left[\because a^{m-n} = \frac{a^{m}}{a^{n}}\right]$$
$$= \frac{1}{\frac{x^{b}+x^{a}}{x^{b}}} + \frac{x^{a}}{\frac{x^{a}+x^{b}}{x^{a}}}$$
$$= \frac{x^{b}}{x^{b}+x^{a}} + \frac{x^{a}}{x^{b}+x^{a}}$$
$$= \frac{x^{b}}{x^{b}+x^{a}} = 1 = RHS$$

Q.15: Represent $\sqrt{9.3}$ on the number line.


Ans: To represent $\sqrt{9.3}$, draw a segment of 9.3 units on the number line, Let AB represent 9.3. Extend it by 1 unit.

Show that $\frac{10.3}{2} = 5.15$ by on the number line with '0' as centre and radius 5.15 units

4

=

