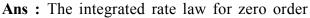
SHIKSHA CLASSES

Subject : Chemistry

BOARD ANSWER PAPER

Total Marks : 20

Class : XII **Topic: 6)** Chemical Kinetics Section (A) Q.1 : a) Select and write the most appropriate answer from the following alternatives of each sub question. (05) i) The rate constant of reaction Ans : a) decreases with increasing E_{a} ii) The slope of straight line obtained by plotting rate versus conc. of reactant for a first order reaction is Ans : d) K iii) The half life of the first order reaction having rate constant K = 1.7×10^{-5} s⁻¹ is Ans : c) 11.1 hour iv) The rate constant of zero order reaction has the unit **Ans** : b) mol $L^{-1} s^{-1}$ v) The order of the reaction for which the units of rate constant are mol dm⁻³ s⁻¹ is Ans : c) 0Q.1 : (b) Very short answer type Question. [2] 1) What is molecularity of the reaction? Ans: The molecularity refers to How many reactant molecules involved in reaction eg. $O_{3(g)} \rightarrow O_{2(g)} + O_{(g)}$ In above reaction there is only one reactant molecule. These are unimolecular reaction or molecularity is one. 2) What is rate law for a reaction. $NO_{2(g)} + CO_{(g)} \rightarrow NO_{(g)} + CO_{2(g)}$ If the reaction occurs in the following steps? i) $NO_2 + NO_2 \rightarrow NO_3 + NO$ (Slow) ii) $NO_3 + NO \rightarrow NO_2 + CO_2$ (Fast) Ans : The rate law for reaction is rate $= -K [NO_2]^2$ NO₃ is reaction intermediate. Section (B)


- Q.2 : Attempt Any Three of the following question. (06)
 - 1) Define rate law. Explain with one example.
- Ans : Rate law is defined as an experimentally determined equation that expresses the rate of a chemical reaction in terms of molar concentrations of the reactants.

 $\mathbf{Ex.:} 2\mathrm{H}_{2}\mathrm{O}_{2} \xrightarrow{\Delta} 2\mathrm{H}_{2}\mathrm{O}_{(l)} + \mathrm{O}_{2}(\mathrm{g})$ The rate law for reaction is

ate =
$$-\frac{1}{2} \frac{d [H_2O_2]}{dt} = K[H_2O_2]$$

The reaction is first order reaction

2) Derive the expression for half life of zero order raction.

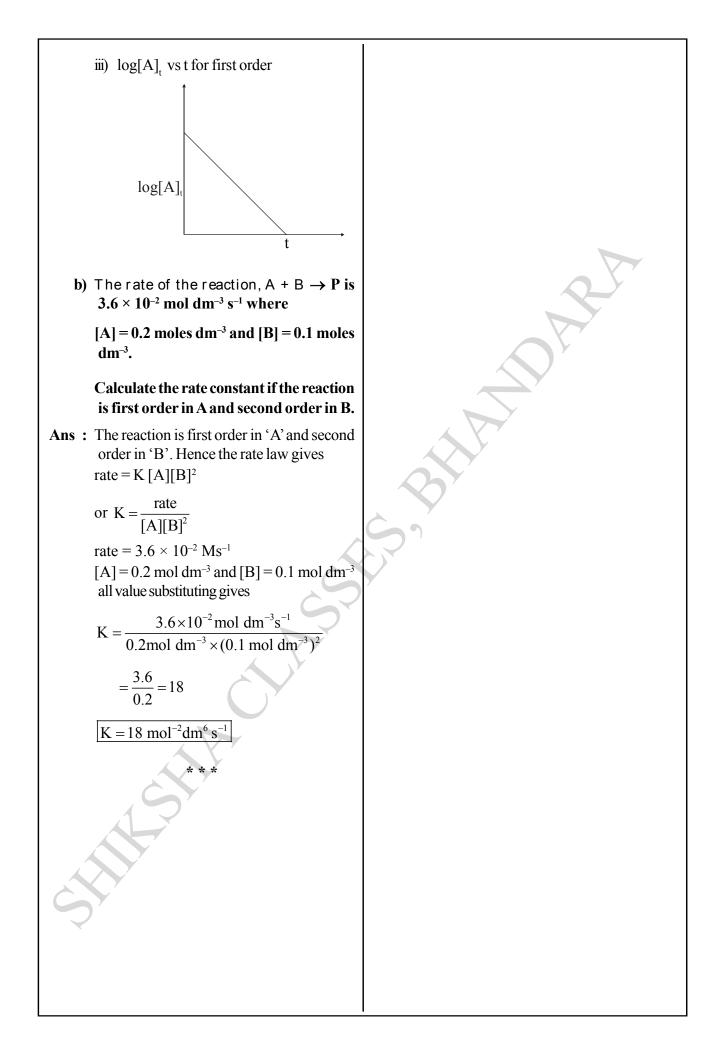
reaction is
$$K = \frac{[A]_0 - [A]_t}{t}$$

where [A], is concentration of A that remains unreacted at time t.

at
$$t = t_{1/2}, [A]_t = \frac{[A]_0}{2}$$

 $K = \frac{[A]_0 - [A]_0 / 2}{t_{1/2}}$ $K = \frac{[A]_0}{2t_{1/2}}$ i.e. $t_{1/2} =$

$$\frac{\left[A\right]_{0}}{2K}$$


- 3) Write Arrehenius equation and explain the terms inolved.
- Ans: The Arrhenius equation is -

$$\ln k = \ln A - \frac{E_a}{RT}$$

or $\log_{10} K = \log_{10} A - \frac{E_a}{2.303 RT}$ $K = \frac{2.303}{t} \log_{10} \frac{[A]_0}{[A]} \theta$ when K=rate constant $=\frac{2.303}{45} \times \log_{10}\frac{100}{40}$ A= frequency factor or pre exponential factor E_a=activation energy $=\frac{2.303}{45} \times \log_{10} 2.5$ T = temperature4) What is zero order reaction? Derive $=\frac{2.303}{45}$ × 0.3979 integrated rate law for zero order reaction. $= 0.0204 \text{ min}^{-1}$ Ans : The rate of zero order reaction is independent of the reactant concentration Half life = $t_{\frac{1}{2}} = \frac{0.693}{K}$ Integrated rate law for zero order reaction A $\rightarrow P$ $=\frac{0.693}{0.0204}$ The differential law is give by rate = $-\frac{d[A]}{[A]} = K[A]^\circ = K$ (i) $= 34 \min$ ii) For the first order reaction $A_{_{(g)}} \rightarrow 2B_{_{(g)}}$ By rearrangement above equ^n given d[A] =+ C_(g) the initial pressure of A is 90 mm -K dt Hg and pressure after 10 min is found Integration between the limits to be 180 mm Hg. Find rate constant of reaction. $[A] = [A]_0$ at t = 0 and $[A] = [A]_t$ at time t Ans : $A \rightarrow 2B + C$ $\int_{0}^{[A]^{t}} d[A] = -K \int_{0}^{t} dt$ $t = 0 \quad P_0 \qquad 0$ $t \quad P_0 - x \qquad 2x$ 0 Х $[A]_{t} - [A_{0}] = -Kt$ $P_{T} = P_{0} + 2x$ Hence $Kt = [A]_0 - [A]_t$ $x = \frac{P_T - P_0}{2}$ Section (C) Q.3 : Answer the following question (any one). $x = \frac{180 - 90}{2} = 45$ (03)1) In a first order reaction $A \rightarrow B$, 60% Pressure of A at time 10 min of the given sample of compound $P_0 - x = 90 - 45 = 45 \text{ mm Hg}$ decomposes in 45 minutes. What is half life of reaction? $K = \frac{2.303}{t} \log \frac{[P_0]}{[P_1]}$ Ans : Given, $[A]_0 = 100\%$ $K = \frac{2.303}{10} \log \frac{90}{45}$ $\gamma = 60\%$ $= 0.2303 \times 0.3010$ \therefore [A], = [A]₀ - χ = 100 - 60 = 40% $= 0.0693 \text{ min}^{-1}$ $t = 45 \min$ Section (D) Formula :-

Q.4 : Answer the following question. (Any one)
(04)
1) a) Derive integrated rate law for first
ans : Consider a general first order reaction is.

$$A \rightarrow products$$

The differential rate law is $-\frac{d[A]}{dt} = K[A]$
where $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 0$ and
 $[A] = [A]_0$ at time $t = 1$
 $here a d [O_2] = -\frac{1}{2} d(D_2) dt$
Hence $\frac{d[O_2]}{dt} = -\frac{1}{2} \frac{d[NO_2]}{dt} = \frac{1}{2} (0.02 \text{ M/S})$
 $= 0.01 \text{ M/S}$.
Rate of reaction =
 $\frac{1}{2} \frac{d[NO_2]}{dt} = \frac{1}{4} \frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$
 $= -\frac{1}{2} x (-0.02 \text{ M/S})$
 $= -0.01 \text{ M/S}$.
Rate of reaction =
 $\frac{1}{2} \frac{d[NO_2]}{dt} = \frac{1}{4} \frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$
 $= -\frac{1}{2} x (-0.02 \text{ M/S})$
 $= -0.01 \text{ M/S}$.
Rate of reaction =
 $\frac{1}{2} \frac{d[NO_2]}{dt} = \frac{1}{4} \frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$
 $= -\frac{1}{2} x (-0.02 \text{ M/S})$
 $= -0.01 \text{ M/S}$.
Nos: $i = 0 \log \frac{[A]_0}{[A]_1}$, vs time(t) for first order
reaction
 $\log \frac{[A]_0}{[A]_1}$, vs t for zero order reaction.
 $\log \frac{[A]_0}{[A]_1}$ vs t for zero order reaction.
 $\log \frac{[A]_0}{[A]_1}$
 $\log (A]_0$, vs t for zero order reaction.
 $\log \frac{[A]_0}{[A]_0}$
 $\log (A)_0$, \log

