

BOARD ANSWER PAPER

Subject : Chemistry 3711

Topic : 5. Electrochemistry

Total Marks : 20

Class	: All
	Section (A)
Q.1 :	a) Select and write the most appropriate
	answer from the following alternatives
	of each sub question. (05)
i)	The SI unit of molar conductivity is
Ans :	$\mathbf{d})\mathbf{S}\mathbf{m}^{2}\mathbf{m}\mathbf{o}\mathbf{l}^{-1}$
ii)	The number of electrons that have a total
	charge of 965 coulomb is
Ans :	c) $6.022 \ge 10^{21}$
iii)	For Daniell Cell which is correct.
Ans :	a) Zn is anode
iv)	Kohlrausch law used to determine molar
	conductivity at zero concentration of
	following electrolyte.
Ans :	d) CH ₃ COOH
v)	On diluting the solution of an electrolyte
Ans :	b) Both ^ and k decrease
Q.1 :	(b) Very short answer type Question [2]
i)	What is sign of cathode and anode in galvanic cell?

- Ans : In galvanic cell anode is negative and cathode is positive electrode.
 - ii) What is relation of molar conductivity with concentration?
- Ans : Molar conductivity decreases with concentration.

$$\Lambda = \frac{1000 \text{k}}{C}$$

Section (B)

Q.2 : Answer the following question (Any

three).

- (06)
- i) The molar conducivity of 0.05 M BaCl, Solution at 25° C is 223 Ω^{-1} cm² mol⁻¹. What is it's conductivity?

```
Ans.: \Lambda = 223\Omega^{-1} \text{cm}^2 \text{mol}^{-1}, C = 0.05 mol L<sup>-1</sup>
           We know that
```

$$k = 0.01115 \Omega^{-1} cm^{-1}$$

ii) How many faradays would be required to plate out 1.00 mole of free metal from following cations?

(i) Mg^{2+} (ii) Cu⁺

Ans : For 1) Mg Metal : $Mg^{2+} + 2e^{\Theta} \rightarrow Mg(s)$.

Hence 2F of electricity require to produce 1 mole Mg.

For (2) Cu Metal : $Cu^+ + le^{\Theta} \rightarrow Cu(s)$.

Hence 1F of electricity require to produce 1 mole of Cu.

- iii) What is cell constant? What is its unit? Write its relation with resistance and conductivity.
- Ans. : Cell constant : It is defined as the ratio of distance between the electrodes and area of cross section of electrode.

If b is cell constant, l = distance between

electrodes and a is area of cross section.

 $\therefore b = \frac{l}{a}$

resistance and conductivity related as

$$k = \frac{b}{R}$$

	K		
iv)Differentiate between		electro-refining.	
	electrolytic Cell and Voltaic Cell.	Voltalic Cell	
Ans : 1) 2) 3) 4) 5) 6)	Electrolytic Cell An electric current drives a non- s p o n t a n o u s reaction. Electrical energy is converted to chemical energy. Anode is positive and cathode is negative. Oxidation occurs at positive electrode. Reduction occurs at negative electrode. They are used for electro-plating.	 A spantaneous chemical reaction generates electric current. Chemical energy is converted to electrical energy. Anode is negative and Cathode is positive. Oxidation occurs at negative electrode. Reduction occurs at positive electrode. They are used as a source of electric current. 	
	Section	n (C)	
Q.3 i Ans	 Answer the follow Calculate mass of c passage of 2.5 A solution of CuSO mass of Cu is 63.4 Given I = 2.5 A t = 40 min = 40 × 0 	ing question (any one). (03) opper produced during of current through a 4 for 40 minutes molar 5g mol ⁻¹ ?	
$M = 63.5 \text{ g mol}^{-1}$			

Reduction half reaction is $Cu^{2+} + 2e^{-} \rightarrow Cu(s)$ Hence mole ratio = $\frac{1 \text{ mole } Cu}{2 \text{ mole } e^-} = \frac{1}{2}$ \therefore Mass copper produced = $\frac{I \times t}{96500} \times$ mole ratio \times molar mass $=\frac{2.5 \times 2400}{96500} \times \frac{1}{2} \times 63.5 = 1.97 \text{g}$ ii) Explain the elctrolysis of molten NaCl ns : 'C' 'C' Anode Cathode (+)(-) Na Metal ō Na Chlorine Gas Fused NaCl Construction :- The cell consist of graphite cathode and anode immersed in molten NaCl. Externally connected to battery. Working of Cell :- As current flows Na⁺ moves towards cathode. $\overset{\boldsymbol{\Theta}}{\text{Cl}}$ moves towards anode. **Cell reaction :** anode $2Cl \longrightarrow Cl_2(g) + 2e^{\ominus}$ cathode $2Na + 2e^{\ominus} \rightarrow 2Na(s)$ Overall reaction $2Na + 2Cl \xrightarrow{\Theta} 2 Na(s) + Cl_2(g)$ **Result :-**

A pale yellow green Cl₂ gas produced at anode.
 A Na metal deposited at cathode.

Section (D)

 $M = 63.5 \text{ g mol}^{-1}$

Mass of copper produced = ?

Q.4 : Answer the following question. (Any one) (04) 1) a) Write Nernst equation for the following reactions i) Cr(s) + 3Fe³⁺(aq) \rightarrow $Cr^{3+}(aq) + 3Fe^{2+}(aq)$ **Ans**: $E_{cell} = E_{cell}^{\circ} - \frac{2.303RT}{3F} \log \frac{[Cr^{3+}][Fe^{2+}]^{3}}{[Fe^{3+}]^{3}}$ $E_{cell} = E_{cell}^{0} - \frac{0.0592}{3} \log \frac{[Cr^{3+}][Fe^{2+}]^{3}}{[Fe^{3+}]^{3}}$ ii) $Al^{3+}(aq) + 3e^{(-)} \rightarrow Al(s)$ **Ans**: $E_{red} = E_{red}^{0} - \frac{2.303 \text{RT}}{3\text{F}} \log \frac{1}{[\text{A}1^{3+}]}$ at 25°C $E_{red} = E_{red}^0 - \frac{0.0592}{3} \log \frac{1}{[A1^{3^+}]}$ b) Calculate potential of following cell at 25°C Zn/Zn²⁺ (0.6M)// H⁺(1.2M) / $H_{2}(g, 1atm) / Pt E^{0}Zn = -0.763V.$ **Ans** : $[Zn^{2+}] = 0.6 M$ $[H^+] = 1.2 \text{ M}$ $H_2 = 1 \text{ atm}$ $E_{7}^{\circ} = -0.763 \text{ V}$ $\therefore E^0 = E^0_{H_2} - E^0 zn$ = 0 - (-0.763)=+0.763VThe overall reaction is $Zn_{(s)} + 2H^+_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_2 \uparrow$ \therefore n=2 no. of moles of e⁻ The Nernest equation is $E_{cell} = E_{cell}^{0} - \frac{0.592}{n} \log_{10} \frac{[Zn^{2+}] [P_{H2}]}{[Zn] [H^{+}]^{2}}$ $= (0.763) - \frac{0.592}{2} \times \log_{10} \frac{0.6 \times 1}{1 \times (1.2)^2}$ $= 0.763 - 0.0296 \times \log_{10} \frac{0.6}{1.44}$ $= 0.763 - 0.0296 \times \log_{10} 0.41$

 $= 0.763 - 0.0296 \times (-0.38)$ = 0.763 + 0.01125

 $E_{cell} = 0.774V$

2) a) Formulate a cell for each of the following reaction

i) $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{AgCl}_{(s)} \rightarrow \operatorname{Sn}^{+4}(\operatorname{aq}) + 2\operatorname{Ag}(s) + 2\operatorname{Cl}^{-}(\operatorname{aq})$

Ans : $\operatorname{Pt} / \operatorname{Sn}_{(aq)}^{+2}$, $\operatorname{Sn}^{+4} // \operatorname{Cl}_{(aq)}^{-} / \operatorname{AgCl}_{(s)} / \operatorname{Ag}$ ii) $\operatorname{Zn}_{(s)} + 2\operatorname{Fe}^{+3}_{(aq)} \rightarrow 2\operatorname{Fe}^{+2}_{(aq)} + \operatorname{Zn}^{+2}_{(aq)}$

Ans :
$$Zn_{(s)} / Zn^{+2}_{(aq)} / / Fe^{+2} , Fe^{+3}_{(aq)} / Pt$$

b) From the following pair predict which is better reducing agent, their standard potentials given in bracket. Give reason.

i) Co⁺³(aq) (1.81V) & I, (0.54V)

Ans : I_2 is stronger reducing agent having less potential than Co⁺³.

ii) $Ce^{3+}(aq)(-2.48V)$ & $Ni^{+2}(-0.25V)$

Ans :
$$Ce^{+3}$$
 is better reducing agent than Ni^{+2} .

* * *

