

BOARD ANSWER PAPER

Class : XII

Subject : Chemistry Topic : 5. Electrochemistry Total Marks : 20

- **Q.1 : a) Select and write the most appropriate answer from the following alternatives of each sub question. (05) i) The SI unit of molar conductivity is**
	-
- **Ans** : **d**) S m² mol⁻¹
	- **ii) The number of electrons that have a total charge of 965 coulomb is**
- Ans : **c**) 6.022×10^{21}
	- **iii) For Daniell Cell which is correct.**
- **Ans : a)** Zn is anode
- (ii) For Daniell Cell which is correct.

Ans: a) Zn is anode

iv) Kohlrausch law used to determine molar

conductivity at zero concentration of

following electrolyte.

Ans: d) CH₃COOH

v) On diluting the solution of an **iv) Kohlrausch law used to determine molar conductivity at zero concentration of following electrolyte.**
- $\mathbf{Ans: d}$ CH₃COOH
	- **v) On diluting the solution of an electrolyte**
- **Ans :** b) Both ^ and k decrease
- **Q.1 : (b) Very short answer type Question[2]**
	- **i) What is sign of cathode and anode in galvanic cell?**
- **Ans :** In galvanic cell anode is negative and cathode is positive electrode.
	- **ii) What is relation of molar conductivity with concentration?**
- **Ans :** Molar conductivity decreases with concentration.

$$
\Lambda = \frac{1000k}{C}
$$

Section (B)

Q.2 : Answer the following question (Any

three). (06)

hemistry Total Marks

three).

i) The molar conducivity of 0.05 M I

Solution at 25° C is 223 Ω^{-1} cm² n

What is it's conductivity?

s.: $\lambda = 223 \Omega^{-1}$ cm² mol⁻¹, C = 0.05 mo

We know that
 $\lambda = \frac{1000k}{C}$ **i)** The molar conducivity of 0.05 M BaCl₂ Solution at 25° C is $223 \Omega^{-1}$ cm² mol⁻¹. **What is it's conductivity?**

```
Ans.: \wedge = 223\Omega^{-1}cm<sup>2</sup> mol<sup>-1</sup>, C = 0.05 mol L<sup>-1</sup>
           We know that
```

$$
\lambda = \frac{1000k}{C}
$$

$$
k = \frac{223 \times 0.05}{1000}
$$

$$
k = 0.01115 \Omega^{-1} \text{cm}^{-1}
$$

- **ii) How many faradays would be required to plate out 1.00 mole of free metal from following cations?**
	- **(i)** Mg^{2+} **(ii)** Cu^+
- Ans $:$ For 1) Mg Metal : $Mg^{2+} + 2e^{\Theta} \rightarrow Mg(s)$. Hence 2F of electricity require to produce 1 mole Mg.

For (2) Cu Metal : $Cu^+ + le^{\Theta} \rightarrow Cu(s)$.

Hence 1F of electricity require to produce 1 mole of Cu.

- **iii) What is cell constant? What is its unit? Write its relation with resistance and conductivity.**
- Ans. : Cell constant : It is defined as the ratio of distance between the electrodes and area of cross section of electrode.

If b is cell constant, $l =$ distance between

electrodes and a is area of cross section.

 $\therefore b = \frac{l}{2}$ *a*

resistance and conductivity related as

$$
k = \frac{b}{R}
$$

mole ratio \times molar
 $=\frac{2.5 \times 2400}{96500} \times \frac{1}{2} \times 63.5 = 1$
 ii) Explain the electrolysis of molten N

S
 \therefore

Anode

(+)

Chlorine

Chlorine

Chlorine

Chlorine

Na Metal Hence mole ratio = 1 mole Cu 1 2 mole e^- 2 $\frac{Cu}{e^-}$ ∴ Mass copper produced = $\frac{I \times t}{96500}$ × mole ratio \times molar mass $=\frac{2.5 \times 2400}{96500} \times \frac{1}{2} \times 63.5 = 1.97g$ **ii) Explain the elctrolysis of molten NaCl Ans :** 'C' Anode (+) 'C' **Cathode** (-) Na Metal **Chlorine** Gas **Fused** NaCl Cl^{Θ} Na **Construction :-** The cell consist of graphite cathode and anode immersed in molten NaCl. Externally connected to battery. **Working of Cell :- As current flows Na⁺** moves towards cathode. \bigcirc moves towards anode. **Cell reaction :** anode 2CI \longrightarrow Cl₂ (g) + 2e cathode $2Na + 2e$ \rightarrow $2Na(s)$ Overall reaction

Reduction half reaction is

 $Cu^{2+} + 2e^- \rightarrow Cu(s)$

$$
2\text{Na}^{\bigoplus}2\text{Cl}^{\bigoplus} \longrightarrow 2\text{Na}(s) + \text{Cl}_2(g)
$$

Result :- 1) A pale yellow green Cl_2 gas produced at anode. 2) A Na metal deposited at cathode. **Section (D)**

Mass of copper produced $=$?

Q.4 : Answer the following question. (Any one)
\n1) a) Write Nernst equation for the
\nfollowing reactions
\ni) Cr(s) + 3Fe³⁺(aq) →
\nCr³⁺(aq) + 3Fe³⁺(aq)
\nAns :
$$
E_{cell} = E_{cell}^0 - \frac{2.303RT}{3F} \log \frac{[Cr^{3+}][Fe^{2+}]^3}{[Fe^{3+}]^3}
$$

\n $E_{cell} = E_{cell}^0 - \frac{0.0592}{3} \log \frac{[Cr^{3+}][Fe^{2+}]^3}{[Fe^{3+}]^3}$
\nii) Al³⁺(aq) + 3e⁶ → Al(s)
\nAns : $E_{real} = E_{real}^0 - \frac{2.303RT}{3F} \log \frac{1}{[Al^{3+}]}$
\nat 25°C
\n $E_{real} = E_{real}^0 - \frac{2.303RT}{3} \log \frac{1}{[Al^{3+}]}$
\n $E_{real} = E_{real}^0 - \frac{0.0592}{3} \log \frac{1}{[Al^{3+}]}$
\n $E_{real} = 1$ atm
\n $E_{real}^0 = 0.6$
\n $H_1^0 = 1.2$ M
\n $H_2 = 1$ atm
\n $E_{real}^0 = E_{real}^0 - E_{real}^0$
\n $= 0.763$ V
\n $\therefore E_0^0 = E_{real}^0 - \frac{0.592}{3} \times E_{real}^0$
\n $= 0.763 - 0.0296 \times 10g_{10} \frac{[Zn^2^+][P_{12}]^2}{[$

 $= 0.763 - 0.0296 \times (-0.38)$ $= 0.763 + 0.01125$

 $E_{cell} = 0.774V$

2) a) Formulate a cell for each of the following reaction

i) $\text{Sn}^{2+}(aq) + 2 \text{AgCl}_{(s)} \rightarrow \text{Sn}^{+4}(aq) +$ $2Ag(s) + 2 Cl^{-}(aq)$

: Pt / Sn⁺², Sn⁺⁴ // Cl_(aq) / AgCl_(s)/
 ii) $\mathbf{Zn}_{(aq)} + 2\mathbf{Fe}^{+3}_{(aq)} \rightarrow 2\mathbf{Fe}^{+2}_{(aq)}$
 $\mathbf{Zn}_{(sq)}^{+2}$ (aq) + $2\mathbf{Fe}^{+2}_{(aq)} \rightarrow 2\mathbf{Fe}^{+2}_{(aq)}$

: $\mathbf{Zn}_{(s)}$ / $\mathbf{Zn}_{(aq)}^{+2}$ // $\mathbf{Fe}^{+2}_{(aq)}$, \mathbf{Fe} **Ans :** Pt / Sn $^{+2}_{(ac)}$, Sn⁺⁴ $\left(\frac{Pt}{sq} \right)$, Sn⁺⁴ // Cl_(aq) / AgCl_(s)/ Ag **ii**) $\mathbf{Zn}_{(s)} + 2\mathbf{Fe}^{+3}_{(aq)} \rightarrow 2\mathbf{Fe}^{+2}_{(aq)} +$ \mathbf{Zn}^{+2} _(aq)

Ans :
$$
Zn_{(s)} / Zn^{+2}_{(aq)} / / Fe^{+2}, Fe^{+3}_{(aq)} / Pt
$$

b) From the following pair predict which is better reducing agent, their standard potentials given in bracket. Give reason.

i) C_0^{+3} (aq) (1.81V) & I_2 (0.54V)

Ans : I_2 is stronger reducing agent having less potential than Co^{+3} .

ii) Ce3+ (aq) (–2.48V) & Ni+2 (–0.25V)

Ans:
$$
Ce^{+3}
$$
 is better reducing agent than Ni⁺².

* * *

