

Subject : ChemistryBOARD ANSWER PAPERTotal Marks : 20	
Class : XII Topic : 4. Chemical Thermodynamics	
Section (A) Q.1 : a) Select and write the most appropriate answer from the following alternatives	 the enthalpy of solution. 3) Solvent - solvent interaction : More solvent - solvent interaction, more
of each sub question. (05)	is the ethalpy of solution.
i) Which of the following is not a state function?	ii) Write any one condition for $\Delta H = \Delta U$ Ans.: The equation of second law of
Ans: (b) heat	
ii) For which of the following substance enthalpy of formation is not equal to zero?	$\Delta H = \Delta U + P\Delta V \text{ or } \Delta H = \Delta U + \Delta n R I$ (1) In vacuum :- $P = 0$
Ans. : (d) $CH_3OH_{(\ell)}$	$\therefore \Delta H = \Delta U$
iii) For which of the following reaction entropy is negative?	(2) When number of moles of gaseous reactants equal to gaseous products
Ans.: (a) $H_2O_{(\ell)} \rightarrow H_2O_{(s)}$	Then $\Delta n = 0$ $\therefore \Delta H = \Delta U$
iv) Given reaction is	Section (B)
$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} \Delta H = -92.6 \text{ kJ},$ The enthalpy of formation is	Q.2 : Answer the following questions. (Any three) (06)
Ans.: (c) $-46.3 \text{ kJ mol}^{-1}$	i) Prove that $\Delta H = \Delta U + \Delta n PT$
v) The correct thermodynamic conditions	Ans · AH and AU are related by equation
for the spontaneous reaction at all	AH=AU+PAV
temperatures are	$\Delta H = \Delta U + I \Delta V$
Ans.: (a) $\Delta H < 0$ and $\Delta S > 0$	$\Delta \Pi = \Delta O + \Gamma (v_2 - v_1)$
(b) Very short answer type Question (02)	$=\Delta U + PV_2 - PV_1$
i) Write any two factors which affects the enthalpy of solution.	Where V_1 is initial volume, V_2 is final volume, if assuming reactants & products are ideal then applying ideal gas equation PV=nRT
Ans.: 1) Solute - solute interaction : More solute - solute interaction, more is	$PV_1 = n_1 RT$ and $PV_2 = n_2 RT$
the enthalpy of solution.	$\Delta H = \Delta U + n_2 RT - n_1 RT$
2) Solute - solvent interaction :	$= \Delta U + RT (n_2 - n_1)$

 $\Delta H = \Delta U + \Delta nRT$

ii) Write the sign conventions of q and W.Ans : Sign Conventions :O (heat)

+ve = For endothermic reaction when heat is absorb by system.

-ve = For exothermic reaction when heat is evolved by system.

W (Work)

+ve = When work is done on system by surroundings (work of compression).

-ve = When work is done by system on surroundings (work of expansion).

- iii) Is it possible for a reaction to be spontaneous yet endothermic. Comment with example.
- **Ans. :** Some endothermic reactions are also spontaneous. For Ex. Melting of ice is endothermic process but it is spontaneous.

 $H_2O(s) \rightleftharpoons H_2O(l) \quad \Delta H = +ve$ ice water

 iv) 2 moles of an ideal gas are expanded Isothermally and reversibly from 20 L to 30 L at 300 K. Calculate the work done (R = 8.314 J k⁻¹ mol⁻¹)

Ans :
$$W_{max} = -2.303 \text{ nRT} \log_{10} \frac{V_2}{V_1}$$

 $n = 2 \text{ mol. T} = 300 \text{ k}, V_1 = 20 \text{ L}, V_2 = 30 \text{ L}$
 $R = 8.314 \text{ J/Kmol}$

Substitutes all the value in above equation.

 $W_{max} = -2.303 \times 2 \times 8.314 \times 300 \times \log_{10} 1.5$ = -2022 J

 $W_{max} = -2.022 \text{ kJ}$

Section (C)

Q.3 : Answer the following question.

(Any One) (03)

- i) Derive the expression for maximum work done during the expansion of an ideal gas in isothermal and reversible process.
- **Ans :** 1) Consider ideal gas expands isothermaily and reversibly. If P_{ext} is external pressure.

Smaller than pressure p of gas by infinitesimally.

It is consider that process occurs in number of steps dV is small change in volume.

2) Then small work done is $dw = -P_{ext} dv$.

3) If pressure of gas is greater by a small amount dP that P_{ext} . Hence $P - P_{ext} = dp$ or

 $P_{ext} = p - dp$.

4) dw = -(P - dP) dv = -Pdv + dpdv(neglecting dp dv)

 $\therefore dw = -pdv$

5) Total work done obtained by integrating

$$\int_{1}^{2} dw = -\int_{v_{1}}^{v_{2}} p dv$$
$$W_{\max} = -\int_{v_{1}}^{v_{2}} p dv$$

ideal gas equation for n-moles is PV = nRT

or
$$P = \frac{nRT}{V}$$

 $W_{max} = -\int_{v_1}^{v_2} nRT \frac{dv}{V}$
6) $W_{max} = -nRT_{v_1} \int_{v_2}^{v_2} \frac{dV}{V}$
 $= -nRT \ln (V)_{v_1}^{v_2}$
 $= -nRT (\ln V_2 - \ln V_1)$
 $= -nRT \left(\ln \frac{V_2}{V_1} \right)$
 $= -2.303 nRT \log_{10} \frac{V_2}{V_1}$

At constant pressure, according to Boyle's law

 $P_1V_1 = P_2V_2$

or
$$\frac{V_2}{V_1} = \frac{p_1}{p_2}$$

 $W_{\text{max}} = -2.303 \ nRT \ \log_{10} \frac{p_1}{p_2}$

ii) What is Enthalpy (H)? Derive relation between change in Enthalpy and heat transfer. **Ans** : Enthalpy of a system is sum of internal Energy of a system and the energy equivalent to PV work H = U + PV.....(1) Change in Enthalpy ΔH is also state function $\Delta H = H_2 - H_1$ Where H₁ and H₂ are the enthalpies of initial and final states, respectively From eq^n . (1) P-dP dV $H_1 = U_1 + P_1V_1$ and $H_2 = U_2 + P_2V_2$ $\Delta H = U_2 + P_2 V_2 - (U_1 + P_1 V_1)$ $= (U_2 - U_1) + (P_2 V_2 - P_1 V_1)$ At constant pressure $P_{1} = P_{2} = P$ $\therefore \Delta H = \Delta U + P \Delta V$ (1)According to first law of thermodynamics $\Delta U = q_n + w$ $\Delta U = q_{\rm p} - P\Delta V$ $q_{\rm p} = \Delta U + P \Delta V$(2) From (1) and (2) $q_n = \Delta H$ Thus change in Enthalpy of system is equal to heat transferred from it at constant pressure. Section (D) Q.4 : Answer the following question. (Any one) (04)i) a) Calculate C-Cl bond enthalpy from following reaction

 $\begin{array}{l} CH_{3}\,Cl_{_{(g)}}+\,Cl_{_{2(g)}}\rightarrow \ CH_{2}Cl_{_{2(g)}}+\,HCl_{_{(g),}}\\ \Delta H^{0}\!=\!-104kJ \ if \ C\text{-}H, \ Cl\text{-}Cl \ and \ H\text{-}Cl \end{array}$

bond enthalpies are 414, 243 and 431 kJ mol⁻¹ respectively.

Ans : Given :-

$$CH_{3}Cl(g) + Cl_{2}(g) \rightarrow CH_{2}Cl_{2}(g) + HCl$$

$$\Delta H^{0} = -104kJ$$

$$\Delta H^{0}(C - H) = 414 kJ$$

$$\Delta H^{0}(H - Cl) = 431 kJ$$

$$\Delta H^{0}(C1 - C1) = 243 kJ$$

$$\Delta H^{0} = \sum \Delta H^{0} \text{ (reactants bonds)}$$

$$- \sum \Delta H^{0} \text{ (product bonds)}$$

$$= [3 \times \Delta H^{0}(C - H) + 1 \times \Delta H^{0}$$

$$(C - C1) + 1 \times \Delta H^{0} (C1 - C1)]$$

$$(C - C1) + 1 \times \Delta H^{0} (C1 - C1)]$$

$$-[2 \times \Delta H^{0} (C - H) + 2 \times \Delta H^{0}$$

$$(C - C1) + \Delta H^{0} (H - Cl)$$

$$-104 = [3 \times 414 + C - Cl + 243]$$

$$-[2 \times 414 + 2(C - Cl) + 431]$$

$$-[104 = [1242 + 243 + C - Cl]$$

$$-[828 + 2(C - Cl) + 431]$$

$$= [1485 + C - Cl] - [1259 + 2(C - Cl)]$$

$$-104 = 1485 - 1259 - (C - Cl)$$

$$C - Cl = 1485 - 1259 + 104$$

$$= 1589 - 1259$$

$$C - Cl = 334 kJ$$

b) Write the expression for enthalpy of reaction when enthapies of all components are given and enthalpy of formation of all components are given.

Ans : 1) The enthalpy of reaction when enthalpies of all components are given

 $\Delta H = \sum H$ products - $\sum H$ reactants

Consider a reaction $aA + bB \rightarrow cC + dD$

 $\therefore \Delta H^0 = (cH_C + dH_D) - (aH_A + bH_B)$

2) The ethalpy of reaction when enthalpies formations of all components are given

 $\Delta H^{0} = \sum \Delta f H^{0} \text{ products} - \sum \Delta f H^{0}$ reactants

For reaction $aA + bB \rightarrow cC + dD$

 $\Delta H^{0} = \left(c \Delta f H^{0}(C) + d \Delta f H^{0}(D) \right)$ $-\left(a\Delta_{f}H^{0}(A)+b\Delta_{f}H^{0}(B)\right)$ ii) a) Write the expressions of first law of thermodyanamics for Ans : First law of thermodynamics is $\Delta U = q + w$ $\Delta U = q + p\Delta v$ i) Process take place in vacuum :-P = 0 $\therefore \Delta U = q \text{ or } - \Delta U = -q$ ii) Adiabatic process :q = 0 $\Delta U = q + w$ $\Delta U = w$ or $-\Delta U = -w$ iii) Isothermal process :- $\Delta U = q + w$ $\Delta U = 0$ \therefore q = -w or -q = w b) What is spontaneous process? State second law of thermodynamics in terms of entropy. Ans : A process that takes place on its own without the continuous help of external agency is called spontaneous process. Second law : Total entropy of a system and surroundings (universe) increases in a spontaneous process. $\Delta S_{T} = \Delta S_{sys} + \Delta S_{surr} > O$

