

Subject : ChemistryBOARD ANSWER PAPERTotal Marks : 20Class : XIITopic : 3. Ionic Equilibria	
Section (A) Q.1 : a) Select and write the most appropriate	Q.2 : Answer the following questions. (Any three) (06)
answer from the following alternative of each sub question. (05)	 i) Explain degree of dissociation. Ans : The degree of dissociation of an electrolyte
i) What is Hydronium ion concentration of a 0.25 M acid HA solution (K = 4×10 ⁻⁸)?	is defined as a fraction of total number of moles of the electrolyte that dissociates into its ions when the equilibrium is attained. It is
Ans : a) 10 ⁻⁴ ii) The pH of 10⁻⁸ M of HCl is	denoted by α symbol and given by
Ans : c) less than 7 iii) Which of the following is Buffer	$\alpha = \frac{\text{number of moles dissociated}}{\text{total number of moles present initially}}$
iii) Which of the following is Buffer solution?	ii) Derive relationship between pH and pOH.
 Ans : c) CH₃ - COOH + CH₃ COONa in water iv) Which of the following aqueous solution is acidic in nature? 	Ans : The ionic product of water is $K_w = [H^{\oplus}][OH^{\Theta}] = 10^{-14}$ Now, $K_w = 1 \times 10^{-14}$ at 298 and thus
 Ans : c) (NH₄)₂ SO₄ v) For pH > 7 the hydronium ion concentration would be 	$[H^{\oplus}][OH^{\Theta}] = 1 \times 10^{-14}$ Taking logarithm of both the sides, we write $\log_{10}[H^{\oplus}] + \log_{10}[OH^{\Theta}] = -14$
 Ans : b) < 10⁻⁷ M (b) Very short answer type Question (02) 	$-\log_{10}[H^{\oplus}] + (-\log_{10}[OH^{\Theta}]) = 14$ $pH + pOH = 14$
 i) Define strong electrolyte. Ans : The electrolytes which ionises almost completely in water are called strong electrolyte e.g. strong acid, strong bases. 	iii) A weak mono basic acid 0.04% dissociated in 0.025 M solution what is pH of solution? Ans : A weak monobasic acid HA dissociates as
ii) What is the pH value of pure water?Ans : pH of pure water is 7.0.	% ∝= 0.04
Section (B)	$=\frac{0.04}{100}=4\times10^{-4}$

Now $[H^{\oplus}] = \infty \times c$

$$= 4 \times 10^{-4} \times 0.025 \times 10^{-1} = 10^{-5} M$$

:
$$pH = -\log_{10}[H^{\oplus}] = -\log_{10}[10^{-5}]$$

pH = 5

- iv) Why the aqueous solution of NaCl is neutral in nature? Explain.
- Ans : The dissociation reactions in the aq. solution of NaCl are

$$\begin{split} & \operatorname{NaCl}_{(aq)} \longrightarrow \operatorname{Na^{+}}_{(aq)} + \operatorname{Cl^{-}}_{(aq)} \\ & \operatorname{H_2O} \rightleftharpoons \operatorname{H^{+}} + \operatorname{OH^{-}} \end{split}$$

Na⁺ ions will not combine with OH⁻ ions because NaOH is strong base it will dissociate completely in water.

Similarly H⁺ ions will not combine with Cl⁻ ions because HCl is stong acid it will dissociate completely in water.

Hence solution contains equal no. of H^+ & OH⁻ ions and thus it is neutral in nature.

Section (C)

- Q.3 : Answer the following question. (Any One) (03)
 - i) The dissociation constant of NH_4OH is 1.8×10^{-5} . Calculate it's degree of dissociation in 0.01 M solution?
- Ans : The degree of dissociation is given by

c.

$$\propto = \sqrt{K_b}$$

$$K_{b} = 1.8 \times 10^{-5}; c = 0.01 = 1 \times 10^{-2} M$$

Hence,
$$\infty = \sqrt{\frac{1.8 \times 10^{-5}}{1 \times 10^{-2}}} = \sqrt{1.8 \times 10^{-3}}$$

= 4.242 × 10⁻²
 $\infty = 0.04242$.

ii) Write a note on Buffer action.

Ans : Resistance of a buffer solution to change its pH when small amount of strong acid or stong base is added is called buffer action. Consider a acidic buffer made by mixing aq. solutions of CH₃COOH & CH₃COO Na The reactions of the solution are

$$CH_{3}COOH \rightleftharpoons CH_{3}CO\overline{O} + H^{+}$$

Acid

 $CH_3COO Na \rightarrow CH_3CO\overline{O} + Na^+$

base

When small amount of strong acid (HCl) is added then added H⁺ ions are neutralise by basic part of buffer

$$\rm CH_3CO\overline{O} + \rm H^+ \rightarrow \rm CH_3COOH$$

When small amount of strong base (NaOH) is added then added OH⁻ ions are neutralise by acidic part of buffer

 $OH^- + CH_3COOH \rightarrow CH_3COO^- + H_2O$

Hence pH of solution does not change.

Section (D)

Q.4 : Answer the following question. (Any one) (04)

- i) What is weak electrolyte? State
 Ostwald's dilution law and derive the expression for weak acid showing relation between K_a and ∞.
- **Ans :** A electrolyte which dissociates partially in water is called weak electrolyte.

Ostwald's dilution law :

Degree of dissociation of weak electrolyte is directly proportional to square root of dilution and inversely proportional to the square root of concentration.

Let 1 mol of weak acid HA is dissolved in V dm³ of water amd \propto is degree of dissociation of acid

The dissociation reaction is

$$\therefore \qquad HA \rightleftharpoons H^+ + A^-$$
Initial 1 0 0
At equilibrium $\frac{1-\infty}{V} = \frac{\infty}{V} = \frac{\infty}{V}$

The dissociation constant of acid HA is.

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{\frac{\infty}{V} \times \frac{\infty}{V}}{\frac{1-\infty}{V}}$$
$$= \frac{\alpha^{2} \times V}{V^{2} \times (1-\infty)}$$
$$= \frac{\alpha^{2}}{V(1-\infty)}$$
$$K_{a} = \frac{\alpha^{2}}{V(1-\infty)}$$

But
$$\frac{1}{V} = C = \text{concentration}$$

$$\therefore K_{a} = \frac{x^{2} C}{1 - x}$$

OR

ii) a) Calculate the pH of buffer solution containg 0.05 mol NaF per litre and 0.015 mole HF per litre $[K_a = 7.2 \times 10^{-4}]$.

Ans :
$$pH = pK_a + \log_{10} \frac{[salt]}{[acid]}$$

$$\therefore pK_a - \log_{10} K_a = -\log_{10} 7.2 \times 10^{-4}$$
$$= 4 - \log_{10} 7.2 = 4 - 0.8573 = 3.1427$$

[salt] = 0.05M [acid] = 0.015M substitution in above equation.

$$pH = 3.1427 + \log_{10} \frac{0.05}{0.015}$$
$$= 3.1427 + \log 3.33$$
$$= 3.1427 + 0.5185$$
$$= 3.6612$$
$$= 3.67$$
$$pH = 3.67$$

b) Explain Arrhenius theory of Acid and bases.

Ans : Acid : Acid is a substance which contains hydrogen and gives rise to H^{\oplus} ions in aqueous solution.

$$HCl(aq) \xrightarrow{water} H^{\oplus}(aq) + Cl^{\Theta}(aq)$$

Arrhenius described H^{\oplus} ions in water as bare ions; they hydrate in aqueous solutions and thus represented as hydronium ions H_3O^{\oplus} .

Base : Base is a substance that contains $OH^{\Theta}(aq)$ ions in aqueous solution.

 $NaOH(aq) \longrightarrow Na^{\oplus}(aq) + OH^{\Theta}(aq)$

Arrhenius theory accounts for properties of different acids and bases and is applicable only to aqueous solutions.

* * *

