

Subject : ChemistryBOARD ANSVClass : XIITopic: 2. S	WER PAPERTotal Marks : 20Solutions
 Q.1 : A) Select and write the most appropriate answer from given alternatives in each sub-question. [4] i) Bronze alloy is type of solution. Ans: c) solid in solid 	 solute in solvent are called dilute solution. ii) What is molar depression in freezing point constant? Give its unit. Ans: 1) Depression on freezing point produced by diagonating 1 mola of solution 1 kg of solvent in
 ii) Freezing point of equimolar aqueous solution will be highest from following. 	called as molar depression in freezing point constant.
Ans: b) HCl iii) K _f is depression in freezing point produced by	2) It is indicated by $K_f = \frac{\Delta T_f}{m}$ 3) It is also called cryoscopic constant
Ans: c) 1 molal solute	 4) Unit is kKg mol⁻¹.
iv) Van't Hoff equation isAns: d) all of these	 What is effect of pressure on solubility of gas in liquid? Give mathematical equation for it.
Q.1 : B) Very short answer type Question. [2]i) Which of the following solution will have	Ans: 1) Solubility of gas in liquid increases with increase in pressure.
Ans. : 0.5 M CaCl_2 . Ans.: 0.5 M CaCl_2 solution will have high boiling point than 0.5 M CaCl_2 solution	2) It is given by Henry's law, solubility of gas in liquid is directly proportional to the particle pressure of the gas present above the surface liquid
ii) What are isotonic solutions?	$S \propto P$
Ans. : Solutions which exerts same osmotic pressure are called isotonic solution.	S = KP(K is Henry's constant.)
Q.2 : Answer the following question.	iv) Give example of :
(Any three) [6]	a) Gas in liquid solutionb) Solid in solid solution
i) Define the term concentrated solution and dilute solution.	Ans:a) Gas in liquid :
Ans:Concentrated solutions:	Oxygen, CO_2 in water
A solution containing relatively more amount of solute in solvent is called concentrated solution.	b) Solid in solid : alloys like brass, bronze
Dilute solution:	Q.3 : Answer the following question.
A solution containing relatively less amount of	(Any one) [3]

- i) Derive relation of relative lowering of vapour pressure and mole fraction of solute.
- **Ans:** If P is vapour pressure of solution, P_1^0 is vapour pressure of pure solvent and x_2 is mole fraction of solute Then relative lowering of vapour pressure is

$$\frac{\Delta P}{P_1^0} = \frac{P_1^0 - P}{P_1^0} = x_2$$

Let W₂g of solute of molar mass M₂ be dissolved in W_1 g. of solvent of molar mass M_1 , Hence number of moles of solvent, n_1 and number of moles of solute n_2 .

$$n_1 = \frac{W_1}{m_1} \text{ and } n_2 = \frac{W_2}{m_2}$$

The mole fraction of solute.

$$x_2 = \frac{n_2}{n_1 + n_2} = \frac{W_2 / m_2}{W_1 / m_1 + W_2 / m_2}$$

$$\cdot \quad \frac{\Delta P}{P_1^0} = \frac{P_1^0 - P}{P_1^0} = x_2 = \frac{W_2 / m_2}{W_1 / m_1 + W_2 / m_2}$$

For dilute solution $n_1 >> n_2$

 n_2 may be neglected. ...

$$\frac{\Delta P}{P_1^0} = \frac{P_1^0 - P}{P_1^0} = \frac{W_2 / m_2}{W_1 / m_1}$$
$$\frac{\Delta P}{P_1^0} = \frac{W_2 m_1}{W_1 m_2}$$

$$\mathbf{T} \cdot \mathbf{m}_2 = \frac{\mathbf{W}_2 \times \mathbf{m}_1 \cdot \mathbf{P}_1^{\ 0}}{\Delta \mathbf{P} \times \mathbf{W}_1}$$

The normal boilling point of ethyl acetate ii) is 77.06 C. A solution of 50g of a nonvolatile solute in 150g of ethyl acetate boils at 84.27[°]C. Evaluate the molar mass of solute if K_{b} for ethyl acetate is 2.77°C kg mol⁻¹. Ans: Given data :

> $W_2 = 50 \text{ g}$ $W_1 = 150 \text{ g}$

$$\Delta T_{b} = T_{b} - T_{b}^{0} = 84.27^{0} \text{ C} - 77.06^{0} \text{ C}$$

$$= 7.21^{0} \text{ C} = 7.21 \text{ K}$$
So $K_{b} = 2.77^{0} \text{ C} \text{ kg mol}^{-1}$

$$= 2.77 \text{ K kg mol}^{-1}$$
We know that $M_{2} = \frac{K_{b} \cdot W_{2} \times 1000}{\Delta T_{b} \cdot W_{1}}$
 $M_{2} = \frac{1000 \text{ g kg}^{-1} \times 2.77 \text{ kg mol}^{-1} \times 50 \text{ g}}{7.21 \text{ K} \times 150 \text{ g}}$

$$\boxed{M_{2} = 128 \text{ g mol}^{-1}}$$
Q.4 : Answer the following question.
(Any one) [5]
i) a) Define ebullioscopic constant and its formula and units.
Ans: Ebullioscopic constant is the
Boiling point elevation
Produced by 1 molal solution.
Formula $K_{b} = \frac{\Delta T_{b}}{m}$
Unit $\frac{K}{\text{mol kg}^{-1}} = \text{K kg mol}^{-1}$

b) 10 g of substance dissolved in 100 gm of water. The boiling point raised by 1°C. Calculate molecular weight of substance $(K_{h} = 0.50)$

Ans:Given

i)

$$W_{2} = 10 \text{ g}$$

$$W_{1} = 100 \text{ g}$$

$$\Delta T_{b} = 1^{0} \text{ C}$$

$$K_{b} = 0.50$$

$$M_{2} = ?$$

$$\Delta T_{b} = K_{b} \times \frac{W_{2} \times 1000}{M_{2} \times W_{1}}$$

$$M_{2} = \frac{K_{b} \times W_{2} \times 1000}{\Delta T_{b} \times W_{1}}$$

$$= \frac{0.5 \times 10 \times 1000}{1 \times 100}$$
$$= \frac{5000}{100} = 50 \text{ g mol}^{-1}$$

ii) a) Derive the equation of molar mass of solute from Boilling point elevation.

Ans: Let W_2 grams of solute having molar mass M_2 dissolved in W_1 grams of solvent having molar mass M_1 to form a dilute solution.

The expression for elevation in B.P. is

$$\Delta T_{b} = K_{b} \times m$$

But,

molality(m)

$$=\frac{W_2 \times 1000}{M_2 \times W_1}$$

$$\therefore \Delta T_{b} = K_{b} \times \frac{W_{2} \times 1000}{M_{2} \times W_{1}}$$

$$\therefore M_2 = \frac{K_b \times W_2 \times 1000}{\Delta T_b \times W_1}$$

b) Osmotic pressure of solution containing 6.8 × 10⁻³ Kg of protein per 1 × 10⁻⁴ m³ of solution is 3.02 × 10³ Pa at 37⁰C. Calculate molar mass of protein. (R = 8.314JK⁻¹ mol⁻¹)

Ans: Given :

$$\pi = 3.02 \times 10^{3} Pa$$

$$W_{2} = 6.8 \times 10^{-3} \text{ kg}$$

$$W_{1} = 1 \times 10^{-4} \text{ m}^{3}$$

$$T = 37 + 273 \text{ K} = 310 \text{ K}$$

$$R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}.$$

$$M_{2} = \frac{W_{2}}{\pi} \frac{\text{RT}}{\text{V}}$$

$$= \frac{6.8 \times 10^{-3} \times 8.314 \times 310}{3.02 \times 10^{3} \times 1 \times 10^{-4} \text{ m}^{3}}$$

$$= 58.06 \text{ g mol}^{-1}.$$
* * *

