Shiksha Classes Bhandara

Mathematics

Q.4

- 0.1 If the sum of the distance of a point from two perpendicular lines in a plane is 1, then its locus is -(A) square (B) circle
 - (C) a straight line (D) two intersecting lines
- **Q.2** OAB is an equilateral triangle of side 2 units and one vertex at origin. If OA is inclined at 60° to the positive xaxis, then the mid point of AB has coordinates

(A)
$$\left(\frac{1-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}\right)$$
 (B) $\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}+1}{2}\right)$
(C) $(1-\sqrt{3}, 1+\sqrt{3})$ (D) $\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right)$

- S_1 and S_2 are two points on AB of a \triangle ABC with vertices Q.3 (-2, 3), (4, -6) and (1, 1). CS₁ and CS₂ divide the triangle into three of equal area. The equation of the lines through the origin drawn parallel to CS1 and CS2 is-
 - Locus of a point that is equidistant from the lines
 - $x + y 2\sqrt{2} = 0$ and $x + y \sqrt{2} = 0$ is (A) $x + y - 5\sqrt{2} = 0$ (B) $x + y - 3\sqrt{2} = 0$ (C) $2x + 2y - 3\sqrt{2} = 0$ (D) $2x + 2y - 5\sqrt{2} = 0$
- 0.5 Given the family of lines, a (3x + 4y + 6) + b(x + y + 2) = 0. The line of the family situated at the greatest distance from the point P (2, 3) has equation – (A) 4x + 3y + 8 = 0(B) 5x + 3y + 10 = 0
 - (C) 15x + 8y + 30 = 0(D) None of these
- If the quadrilateral formed by the lines ax + by + c = 0, Q.6 $ax + by + c_1 = 0$ $a_1x + b_1y + c_1 = 0$, $a_1x + b_1y + c_1 = 0$, $a_1 x + b_1 y + c = 0$ has perpendicular diagonals, then (A) $a^2 + b^2 = a_1^2 + b_1^2$ (B) $b^2 + c^2 = b_1^2 + c_1^2$ (C) $a^2 + c^2 = a_1^2 + c_1^2$ (D) $a + b = a_1 + b_1$
- The diagonals AC and BD of a rhombus intersect at (5, 6). Q.7 If $A \equiv (3, 2)$ then equation of diagonal BD is (A) y - x = 1(B) 2y - x = 17
 - (C) y 2x + 4 = 0(D) 2y + x = 17
- **Q.8** The family of straight lines (2a + 3b) x + (a - b) y + 2a - 4b = 0 is concurrent at the

point
(A)
$$\left(\frac{2}{5}, \frac{-14}{5}\right)$$
(B) $\left(\frac{-2}{5}, \frac{-14}{5}\right)$
(C) $\left(\frac{-2}{5}, \frac{14}{5}\right)$
(D) $\left(\frac{2}{5}, \frac{14}{5}\right)$
 $\lambda x + (\sin \alpha) x + \cos \alpha = 0$

 $\checkmark \lambda x + (\sin \alpha) y + \cos \alpha = 0$

If the lines $x + (\cos \alpha) y + \sin \alpha = 0$ Q.9 $x - (\sin \alpha) y + \cos \alpha = 0$

> pass through the same point where $\alpha \in R$ then λ lies in the interval.

(B) $[-\sqrt{2}, -\sqrt{2}]$ (A) [-1, 1] (D) $(-\infty,\infty)$ (C) [-2, 2]

- **Q.10** Consider the straight line ax + by = c where $a, b, c \in \mathbb{R}^+$. This line meets the coordinate axes at 'P' and 'O' respectively. If the area of triangle OPQ, 'O' being origin, does not depend upon a, b and c, then (A) a, b, c are in G.P. (B) a, c, b are in G.P.
 - (C) a, b, c are in A.P. (D) a, c, b are in A.P.
- The nearest point on the line 3x + 4y = 12 from the origin Q.11 is

$$(A)\left(\frac{36}{25},\frac{48}{25}\right) \qquad (B)\left(3,\frac{3}{4}\right)$$

(C)(2, 3/2)(D) none of these **Q.12** If a, b, c are in A.P. then ax + by + c = 0 represents (A) a single line

(B) a family of concurrent lines

(D) none of these (C) a family of parallel lines

Q.13 Image of the point P(1, 5) with respect to the line 4x + 3y + 6 = 0 is -

(A)
$$\left(\frac{19}{25}, \frac{13}{25}\right)$$
 (B) $\left(\frac{13}{25}, \frac{19}{25}\right)$
(C) (-7, -1) (D) $\left(\frac{191}{25}, \frac{113}{25}\right)$

Q.14 If the points $P(a^2, a)$ lies in the region corresponding to the acute angle between the lines 2y = x and 4y = x, then (A) $a \in (2, 6)$ (B) $a \in (4, 6)$

(C)
$$a \in (2, 4)$$
 (D) none of these

Q.15 A straight line L through the point (3, -2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$. If L also intersects the xaxis, then the equation of L is –

(A)
$$y + \sqrt{3x} + 2 - 3\sqrt{3} = 0$$
 (B) $y - \sqrt{3x} + 2 + 3\sqrt{3} = 0$
(C) $\sqrt{3y} - x + 3 + 2\sqrt{3} = 0$ (D) $\sqrt{3y} + x - 3 + 2\sqrt{3} = 0$

Q.16 If the equations of the pairs of opposite sides of a parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5 = 0$, then equations of its diagonals are

(A)
$$x + 4y = 13$$
, $y = 4x - 7$ (B) $4x + y = 13$, $4y = x - 7$
(C) $4x + y = 13$, $y = 4x - 7$ (D) $y - 4x = 13$, $y + 4x = 7$

Q.17 The vertices of a triangle ABC are A $(p^2, -p)$, B (q^2, q) , C (r^2 , -r). The area of the triangle ABC is –

(A)
$$\frac{1}{2}(p+q)(q+r)(r+p)$$
 (B) $\frac{1}{2}(p-q)(q+r)(r+p)$
(C) $\frac{1}{2}(p+q)(q-r)(r-p)$ (D) $\frac{1}{2}(p+q)(q+r)(p-r)$

- **Q.18** Let $0 < \alpha < \pi/2$ be fixed angle. If $P = (\cos \theta, \sin \theta)$ and $Q = (\cos (\alpha - \theta), \sin(\alpha - \theta))$, then Q is obtained from P by (A) clockwise rotation around origin through an angle α (B)anticlockwise rotation around origin through an angle α (C) reflection in the line through origin with slope tan α (D) reflection in the line through origin with slope tan ($\alpha/2$)
- **Q.19** The incentre of the triangle with vertices $(1,\sqrt{3}), (0,0)$ and (2, 0) is -

(A)
$$(1,\sqrt{3}/2)$$
 (B) $(2/3,1/\sqrt{3})$
(C) $(2/3,\sqrt{3}/2)$ (D) $(1,1/\sqrt{3})$

- **Q.20** The vertices of a triangle are (0, 0), (3, 0) and (0, 4). Its orthocentre is at -(A) (3/2, 2) (B)(0,0)(C) (1, 4/3) (D) None of these
- For O.21-O.25 :

The answer to each question is a NUMERICAL VALUE.

- Q.21 If the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then $\frac{a+b}{h} + \frac{8h^2}{ab}$ is equal to –

- **Q.22** If 7x + 3y + 9 = 0 and y = kx + 7 are two parallel lines than (-3k) is -
- 0.23 The straight lines 7x - 2y + 10 = 0 and 7x + 2y - 10 = 0forms an isosceles triangle with the line y = 2. Area of this triangle is (18 / X) sq. units. Find the value of X.
- Q.24 A straight line through the origin O meets the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then the point O divides the segment PQ in the ratio is

X : 4. Find the value of X.

Q.25 If one vertex of equilateral Δ is at A (3, 4) and the base BC is x + y - 5 = 0, then the length of each side of the Δ is $\frac{X\sqrt{2}}{\sqrt{3}}$. Find the value of X

