

Std. XII Sci.: **PHYSICS**

PRELIMINARY QUESTION PAPER - 1

Time: 3 Hours Total Marks: 70

General instructions:

- i. The question paper is divided into four sections.
- Section A: O.No.1 contains Ten multiple choice type of questions carrying One mark each. ii. Q. No.2 contains Eight very short answer type of questions carrying **One mark** each.
- Section B: Q.No.3 to Q. No. 14 contains Twelve short answer type of questions carrying iii. Two marks each. (Attempt any Eight).
- Section C: Q.No.15 to Q. No. 26 contains Twelve short answer type of questions carrying iv. Three marks each. (Attempt any Eight).
- Section D: O.No.27 to O. No. 31 contains Five long answer type of questions carrying v. Four marks each. (Attempt any Three).
- Use of log table is allowed. Use of calculator is not allowed. vi.
- Figures to the right indicate full marks. vii.
- For each MCQ, correct answer must be written along with its alphabet. V111.
 - e.g., (a)..../ (b)..../ (c)..../ (d)..... Only first attempt will be considered for evaluation.
- Physical constants: ix.
 - The quantity $\left(\frac{1}{4\pi\epsilon_0}\right) = 9 \times 10^9$, a.
 - b. Permeability of free space $(\mu_0) = 4\pi \times 10^{-7} \text{ H/m}$
 - Velocity of sound in air = 340 ms^{-1} c.

SECTION A

Q.1. Select and write the correct answer:

[10]

- Sensitivity of a potentiometer is increased by
 - increasing the emf of the cell.
 - (B) increasing the length of potentiometer wire.
 - decreasing the length of potentiometer wire. (C)
 - none of these
- A thin ring has mass 0.25 kg and radius 0.5 m. Its M.I. about an axis passing through its centre and ii. perpendicular to its plane is (A) 0.0625 kg m^2 (B) 0.625 kg m^2 (C) 6.25 kg m^2

- A wire of length 2 m is moving with a velocity of 1 m/s normal to a magnetic field of iii. 0.5 Wb/m². The e.m.f induced in it will be
 - (A) 0.5 V
- (B) 0.1 V
- (C) 2 V
- (D) 1 V

- The magnetic field inside a long solenoid is iv.
 - non uniform
- uniform
- infinity

- In a BJT, largest current flow occurs v.
 - in the emitter (A)

in the collector (B)

in the base (C)

- through CB junction (D)
- Heat energy is incident on the surface at the rate of 500 J/min. If coefficient of absorption is 0.6 and vi. coefficient of reflection is 0.2 then heat energy transmitted by the surface in 5 minutes is
 - (A) 150 J

П

- (B) 500 J
- (C) 350 J
- (D) 100 J
- Which of the following is NOT the property of equipotential surfaces? vii.
 - They do not intersect each other. (A)
 - (B) They are concentric spheres for uniform electric field.
 - Potential at all points on the surface has constant value. (C)
 - Separation of equipotential surfaces increases with decrease in electric field. (D)

Std. XII Sci.: PHYSICS

PRELIMINARY QUESTION PAPER - 1

V111.	In LCR series circuit, at resonance, the power factor is							
	(A)	Zero	(B)	0.5	(C)	1	(D)	∞

- ix. Chemical properties of an atom are decided by
 - (A) number of nucleons.

(B) number of neutrons.

(C) number of electrons.

- (D) number of electrons, protons and neutrons.
- x. Which of the following statement is not related to photon?
 - (A) Its energy does not depend on frequency.
- (B) Its energy depends on frequency.
- (C) It moves always with the velocity light.
- (D) Its wave is electromagnetic.

Q.2. Answer the following:

[8]

- i. What does the negative sign indicate in Lenz's law?
- ii. Define the beat frequency.
- iii. If the radius of third Bohr's orbit in Hydrogen atom is 47.7×10^{-11} m. What will be the radius of the first Bohr's orbit?
- iv. What will be the direction of angular displacement and angular velocity, if angular acceleration is constant and is along the axis of rotation?
- v. In a common-base connection, a certain transistor has an emitter current of 10 mA and collector current of 9.8 mA. Calculate the value of the base current.
- vi. A straight conductor 2 m long carrying a current of 15 A is kept at right angles to a uniform magnetic field of induction 5×10^{-3} Wb/m². What is the force acting upon it?
- vii. Mention the conditions under which a real gas obeys ideal gas equation.
- viii. How can a galvanometer be converted into an ammeter?

SECTION B (Attempt any Eight)

[16]

- Q.3. A needle of a sewing machine moves along a path of amplitude 4 cm with frequency 5 Hz. Find its acceleration $\frac{1}{30}$ s after it has crossed the mean position.
- Q.4. Distinguish between conductors and insulators.
- Q.5. Explain the term gauge pressure.
- Q.6. Determine the adiabatic ratio in terms of degrees of freedom for a polyatomic gas.
- Q.7. Find the reactance of a coil of inductance 100 mH at a frequency 50 Hz and 1000 Hz.
- Q.8. A uniform disc and a hollow right circular cone have the same formula for their M.I., when rotating about their central axes. Why is it so?
- Q.9. The number of waves in 6 cm of vacuum is same as the number of waves in x cm of a medium. If the refractive index of the medium is $\frac{3}{2}$, find x.
- Q.10. Derive on expression for the total emf induced in a conducting rotating rod.
- Q.11. State Merits of Rutherford's model.
- Q.12. Two sound waves travel at a speed of 330 m/s. If their frequencies are also identical and are equal to 540 Hz, what will be the phase difference between the waves at points 3.5 m from one source and 3 m from the other if the sources are in phase?
- Q.13. Derive an expression for magnitude of magnetic dipole moment of a revolving electron.
- Q.14. Draw a neat diagram of a full wave rectifier

Std. XII Sci.: PHYSICS PRELIMINARY QUESTION PAPER - 1

SECTION C (Attempt any Eight)

[24]

- Q.15. An air column is of length 17 cm long. Calculate the frequency of 5th overtone if the air column is
- i. closed at one end and
- ii. open at both ends.
- Q.16. Derive an expression for maximum possible speed for a vehicle to move on horizontal unbanked road.
- Q.17. Obtain an expression for power consumed in a LCR series circuit.
- Q.18. Derive the relation between surface tension and surface energy per unit area.
- Q.19. Prove that under certain conditions a magnet vibrating in uniform magnetic field performs angular S.H.M.
- Q.20. State Curie law for paramagnetic material. Using the law, derive relation between magnetic susceptibility and temperature.
- Q.21. State and explain law of equipartition of energy.
- Q.22. Derive Malus' law.
- Q.23. What are the conditions for system to be in:
- i. Mechanical equilibrium

ii. Chemical equilibrium

iii. Thermal equilibrium

Q.24.

- i. Prove that nuclear density for all the nuclei is same.
- ii. Why is it necessary to connect a high resistance in series with a LED?
- Q.25. Find the potential midway between two point charges 2×10^{-9} C and 5×10^{-9} C, 0.2 m apart. How much work must be done in placing a third charge 4×10^{-9} C at that point?
- O.26. State and explain Faraday's laws of electromagnetic induction.

SECTION D (Attempt any Three)

[12]

Q.27.

- i. Why does the speed of a liquid increase and its pressure decrease when a liquid passes through constriction in a horizontal pipe?
- ii. State the merits of Huygens' wave theory of light.

Q.28.

- i. Explain: Kirchhoff's voltage law is based on the law of conservation of energy.
- ii. The current of 1 A is flowing through an external resistance of 10 Ω when it is connected to the terminals of a cell. This current reduces to 0.5 A when the external resistance is 25 Ω . Find the internal resistance of the cell.
- Q.29. Describe Davisson and Germer experiment

Q.30.

- i. Explain how 1 ampere is defined using concept of force between two long parallel current carrying wires
- ii. Two parallel wires are 2 cm apart and carry currents of 30 A and 40 A in the same direction. Find the approximate total force they exert on each other, if the length of each is 10 cm.
- Q.31. Draw a p-V diagram and explain the concept of positive and negative work. Give one example each.

