Shiksha Classes Bhandara

Mathematics

Topic : Matrices and Determinants

MM 100

0.1 The trace $T_r(A)$ of a 3 × 3 matrix A = (a_{ii}) is defined by the relation $T_r(A) = a_{11} + a_{22} + a_{33}$ (i.e. $T_r(A)$ is sum of the main diagonal elements). Which of the following statements cannot hold ? (A) $T_r(kA) = kT_r(A)$ (k is a scalar) (B) $T_r(A + B) = T_r(A) + T_r(B)$ (C) $T_r(I_3) = 3$ (D) $T_r(A^2) = T_r(A)^2$ Q.2 Let A be an invertible matrix, which of the following is not true – (A) $(A')^{-1} = (A^{-1})'$ (B) $A^{-1} = |A|^{-1}$ (C) $(A^2)^{-1} = (A^{-1})^2$ (D) None of these **Q.3** If 1 is a cube root of unity, find the value of ω^2 ω^3 1 ω ω^2 $\boldsymbol{\omega}^3$ 1 ω ω^2 ω^3 1 ω ω^2 ω^3 1 ω (A) $\pm i\sqrt{3}$. (B) $\pm i 3\sqrt{2}$ (C) 2i (D) None of these Q.4 If A and B are non singular Matrices of same order then Adj. (AB) is (A) Adj. (A) (Adj. B) (B) (Adj. B) (Adj. A) (D) none of these (C) Adj. A + Adj. B 0.5 If a is real and $\sqrt{2}ax + \sin By + \cos Bz = 0$, $x + \cos By + \sin Bz = 0$, $-x + \sin By - \cos Bz = 0$, then the set of all values of a for which the system of linear equations has a non-trivial solution, is -(A) [1, 2] (B) [-1, 1] (D) $[2^{-1/2}, 2^{1/2}]$ (C) [1. ∞] A and B are two given matrices such that the order of A is 0.6 3×4 , if A' B and BA' are both defined then (A) order of B' is 3×4 (B) order of B'A is 4×4 (C) order of B'A is 3×3 (D) B'A is undefined If A is a non-singular matrix satisfying AB - BA = A, then Q.7 which one of the following holds true -(A) det. B = 0(B) B = 0(C) det. A = 1(D) det. (B + I) = det. (B - I)If A₁, A₃, A_{2n - 1} are n skew symmetric matrices of Q.8 same order then $\mathbf{B} = \sum_{r=1}^{\infty} (2r-1)(\mathbf{A}_{2r-1})^{2r-1}$ will be (A) symmetric (B) skew symmetric (C) neither symmetric nor skew symmetric (D) data is adequate Q.9 If A and B are two square matrices such that $B = -A^{-1}BA$, then $(A + B)^2$ is equal to – (B) $A^2 + B^2$ (A) 0 (C) $A^2 + 2AB + B^2$ (D) A + B

Q.10	If x, y, z are unequal and	$\begin{vmatrix} x^{3} & (x+a)^{3} & (x-a)^{3} \\ y^{3} & (y-a)^{3} & (y-a)^{3} \\ z^{3} & (z+a)^{3} & (z-a)^{3} \end{vmatrix} = 0,$
Q.11		(B) 3xyz (D) 2xyz ers x making the value of the 5 -1 equal to 86. The sum of these 2x
Q.12	two numbers, is (A) - 4 (C) - 3 If f (x) satisfies the equa	(B) 5 (D) 9
Q.13	for all real x, then- (A) f (x) is not periodic (B) f (x) is periodic and is of period 1 (C) f (x) is periodic and is of period 7 (D) f (x) is an odd function If a ₀ , a ₁ , a ₂ , a ₃ , a ₄ are in A.P. with the common difference	
	d, the value of $\begin{vmatrix} a_1a_2 & a_1\\ a_2a_3 & a_2\\ a_3a_4 & a_3\\ a_4 & a_4 \\ a_4 $	(B) 2d ³
Q.14	(C) $2d^2$ If $\Delta = \begin{vmatrix} \cos\frac{\theta}{2} & 1 \\ 1 & \cos\frac{\theta}{2} \end{vmatrix}$	(D) 2d 1 $-\cos\frac{\theta}{2}$ lies in the interval -1
	$\begin{vmatrix} -\cos\frac{\theta}{2} & 1 \\ (A) [2, 4] \\ (C) [1, 3] \end{vmatrix}$	-1 (B) [0, 4] (D) [-2, 2]
Q.15	A solution of the set of equations $x+y+z = xy + yz + zx = 0$, $x^3 + y^3 + z^3 = -3$ is- (A) 1, ω , ω^2 (B) 1, ω , $-\omega^2$ (C) 1, $-\omega$, ω^2 (D) -1 , $-\omega$, $-\omega^2$	
Q.16	$(\omega \neq 1$ being a cube root of unity) The set of equations $2x + y + 3z = 1$, $x - 2y + 2z = -1$, 4x + 7y + 5z = 5 has (A) a unique solution (B) no solution (C) a finite number of solutions	
(D) an infinite number of solutions		

Q.17 If A, B are two square matrices such that AB = A and BA = B, then (A) Only B is idempotent (B) A, B are idempotent (C) Only A is idempotent (D) None of these $\cos \alpha \quad \sin \alpha$ **Q.18** The matrix is – $-\sin\alpha \cos\alpha$ (A) symmetric (B) unique (C) orthogonal (D) scalar **Q.19** Matrix M_r is defined as $M_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$, $r \in N$. Then det (M_1) + det. (M_2) + + det. (M_{2009}) = ? (B) $(2009)^2$ (A) 2009 (C) (2009)³ (D) None of these **Q.20** The set of equations : $\lambda x - y + (\cos \theta) z = 0$; 3x + y + 2z=0; $(\cos \theta) x + y + 2z = 0$; $0 \le \theta < 2\pi$, has non-trivial solution(s) (A) for no value of λ and θ (B) for all values of λ and θ (C) for all values of λ and only two values of θ (D) for only one value of λ and all values of θ For Q.21-Q.25 : The answer to each question is a NUMERICAL VALUE. 2 y z **Q.21** If $x \neq 2$, $y \neq 2$, $z \neq 2$ and $\begin{vmatrix} x & 2 \\ z \end{vmatrix} = 0$, then the value of x y 2 $\frac{2}{2-x} + \frac{2}{2-y} + \frac{2}{2-z} =$

Q.22 In the determinant $\Delta = \begin{vmatrix} 4 & -5 & -1 \\ 2 & 3 & -8 \\ 6 & -3 & 4 \end{vmatrix}$, the sum of the minors of elements of third row is –

Q.23 If
$$\alpha$$
, β , γ are the roots of $x^3 - x^2 - 8 = 0$, find the value of

$$\begin{vmatrix} \gamma + \alpha & \alpha + \beta & \beta + \gamma \\ \alpha (\beta + \gamma) & \beta (\gamma + \alpha) & \gamma (\alpha + \beta) \\ \alpha^2 + 1 & \beta^2 + 1 & \gamma^2 + 1 \end{vmatrix}$$
Q.24 If $\begin{vmatrix} 2a + b + c & a + 2b + c & a + b + 2c \\ a + 2b + c & a + b + 2c & 2a + b + c \\ a + b + 2c & 2a + b + c & a + 2b + c \end{vmatrix} = \lambda \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$,
then the value of λ is –
Q.25 If $\begin{vmatrix} x^n & x^{n+2} & x^{n+4} \\ y^n & y^{n+2} & y^{n+4} \\ z^n & z^{n+2} & z^{n+4} \end{vmatrix}$
 $= \left(\frac{1}{y^2} - \frac{1}{x^2}\right) \left(\frac{1}{z^2} - \frac{1}{y^2}\right) \left(\frac{1}{x^2} - \frac{1}{z^2}\right)$, then n is equal to
(-X). Find the value of X.

