Shiksha Classes Bhandara

Mathematics

Topic : Differential Equations

MM 100

If solution of differential equation $\frac{dy}{dx} - y = 1 - e^{-x}$ and Q.1 $y(0) = y_0$ has a finite value. When $x \to \infty$ then, y_0 is equal to (A) - 1/2**(B)** 0 (D) –1 (C) 1 If $\int t y(t)dt = x^2 + y(x)$ then y as a function of x is Q.2 (A) $y = 2 - (2 + a^2)e^{\frac{x^2 - a^2}{2}}$ (B) $y = 1 - (2 + a^2)e^{\frac{x^2 - a^2}{2}}$ (C) $y = 2 - (1 + a^2)e^{\frac{x^2 - a^2}{2}}$ (D) none The equation of the curve satisfying the differential Q.3 equation y $(x + y^3) dx = x (y^3 - x) dy$ and passing through the point (1, 1) is (B) $y^3 + 2x + 3x^2y = 0$ (D) None of these (A) $y^3 - 2x + 3x^2y = 0$ (C) $y^3 + 2x - 3x^2y = 0$ The differential equation representing the family of 0.4 hyperbolas $a^2x^2 - b^2y^2 = c^2$ is (A) $\frac{y''}{y'} + \frac{y'}{y} = \frac{1}{x}$ (B) $\frac{y''}{y'} + \frac{y'}{y} = \frac{1}{x^2}$ (C) $\frac{y''}{y'} - \frac{y'}{y} = \frac{1}{x}$ (D) $\frac{y''}{y'} = \frac{y}{y'} - \frac{1}{x}$ Solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$ is Q.5 (A) x ($y + \cos x$) = cos x + C (B) x $(y - \cos x) = \sin x + C(C) x$ $(y + \cos x) = \sin x + C$ (D) None of these If $y = \frac{x}{\ln|cx|}$ (where c is an arbitrary constant) is the Q.6 general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \phi\left(\frac{x}{y}\right)$ then the function $\phi\left(\frac{x}{y}\right)$ is : (A) $\frac{x^2}{v^2}$ (B) – (C) $\frac{y^2}{2}$ (D) $-\frac{y^2}{2}$ The solution of the differential equation, **Q.7** $2x^2y\frac{dy}{dx} = \tan(x^2y^2) - 2xy^2$ given $y(1) = \sqrt{\frac{\pi}{2}}$ is (A) $\sin x^2 y^2 = e^{x-1}$ (B) $\sin(x^2y^2) = x$ (C) $\cos x^2 y^2 + x = 0$ (D) $\sin(x^2y^2) = e.e^x$ The solution of the differential equation $\frac{dy}{dx} + 1 = e^{x + y}$ is Q.8 (A) $(x + y) e^{x + y} = 0$ (B) $(x + c) e^{x + y} = 0$ (C) $(x-c) e^{x+y} = 1$ (D) $(x - c) e^{x + y} + 1 = 0$ Q.9 The general solution of the differential equation $(1 + y^2) dx + (1 + x^2) dy = 0$ is

Q.10	(A) $mx - y = C (1 - xy)$ (C) $(x + y) = C (1 - xy)$ The curve which satisfies the and passes through $(1, 1)$ is (A) Pair of lines through the (B) Hyperbola with eccentral sectors in the sectors of the sectors in the sectors of t	(B) $x - y = C (1 + xy)$ (D) $x + y = C (1 + xy)$ the differential equation $y'= 3x/y$ a- the origin active 2
	(C) Hyperbola with eccentricity $2/\sqrt{3}$	
Q.11	(D) None of these A population grows at the	rate of 5% per year. Then the
	population will be doubled i (A) 10 log 2 years	in – (B) 20 log 2 years
	(C) 30 log 2 years	(D) None of these
Q.12	The differential equation of all ellipses centred at the origin having major and minor axes along coordinate axes	
	$^{1S}(A) xyy_2 - xy_1^2 + yy_1 = 0$	(B) $xyy_2 + xy_1^2 - yy_1 = 0$
	(C) $xyy_2 + xy_1^2 + yy_1 = 0$	(D) none of these
Q.13	The x-intercept of the tangent to a curve is equal to the ordinate of the point of contact. The equation of the curve through the point $(1, 1)$ is	
		x
	(A) $ve^{y} - e$	(B) $xe^{y} - e$
	<u>J</u>	<u>J</u>

Q.14 Spherical rain drop evaporates at a rate proportional to its surface area. The differential equation corresponding to the rate of change of the radius of the rain drop if the constant of proportionality is K > 0, is

(D) $ve^x = e$

(A)
$$\frac{d\mathbf{r}}{dt} + \mathbf{K} = 0$$
 (B) $\frac{d\mathbf{r}}{dt} - \mathbf{K} = 0$
(C) $\frac{d\mathbf{r}}{dt} = \mathbf{K}\mathbf{r}$ (D) none

Q.15 The differential equation of the system of circles touching the x-axis at origin is –

(A)
$$(x^{2} - y^{2})\frac{dy}{dx} + 2xy = 0$$

(B) $(x^{2} - y^{2})\frac{dy}{dx} - 2xy = 0$
(C) $(x^{2} + y^{2})\frac{dy}{dx} + 2xy = 0$

(C) $xe^{x} = e$

(D) a second order differential equation

Q.16 Differential equation
$$\frac{dy}{dx} + \frac{9x}{4y} = 0$$
 represents a family of

- (A) parallel straight lines whose slope is $\tan^{-1}(3/2)$
- (B) concentric circles with centre at (3, 2)
- (C) ellipses with eccentricity $\sqrt{5}/3$

(D) hyperbolas with eccentricity $\sqrt{5}/2$

 $\begin{array}{lll} \textbf{Q.17} & \text{The solution of the differential equation} \\ e^x \left(x+1\right) dx + \left(ye^y - xe^x\right) dy = 0 \text{ with initial conditions} \\ f \left(0\right) = 0 \text{ is } - \\ & (A) xe^x + 2y^2e^y = 0 \\ & (C) xe^x - 2y^2e^x = 0 \\ & (D) 2xe^x - y^2e^y = 0 \end{array}$

Q.18 The differential equation of the curve given by y = ax + (b/x) is

(A)
$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 0$$

(B) $x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} + 2y = 0$
(C) $x^{2} \frac{d^{2}y}{dx^{2}} V + x \frac{dy}{dx} - y = 0$
(D) $x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + y = 0$

- Q.19 The curve in which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is
 - (A) an ellipse (B) a parabola
- (C) a rectangular hyperbola (D) none of these Q.20 If the curve y = f(x) passes through (1, 2) and satisfies the
- differential equation y (1 + xy)dx xdy = 0, then

(A)
$$f(x) = \frac{2x}{2-x^2}$$

(B) $f(x) = \frac{x+1}{x^2+1}$
(C) $f(x) = \frac{x-1}{4-x^2}$
(D) $f(x) = \frac{4x}{1-2x^2}$

- For Q.21-Q.25 : The answer to each question is a NUMERICAL VALUE.
- **Q.21** The degree of the differential equation, of which $y^2 = 4a (x + a)$ is a solution, is –
- Q.22 The degree of differential equation

$$x = 1 + \left(\frac{dy}{dx}\right) + \frac{1}{2!}\left(\frac{dy}{dx}\right)^2 + \frac{1}{3!}\left(\frac{dy}{dx}\right)^3 + \dots$$

 $\textbf{Q.23} \quad \text{The degree of the differential equation} \\$

$$\left(\frac{d^4y}{dx^4}\right)^{3/5} - 5\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 5 = 0$$
 is -

- Q.24 A tank contains 30 lit. of a chemical solution prepared by dissolving 120 gm of a soluble substance in the fresh water. Fluid containing 4 gm. of this substance per lit. runs in at the rate of 4 lit./min. and the well-stirred mixture runs out at the same rate. The amount (in gm) of substance in the tank after 30 min. is
- **Q.25** The order of the differential equation associated with the primitive $y = c_1 + c_2e^x + c_3e^{-2x+c_4}$, where c_1 , c_2 , c_3 , c_4 are arbitrary constants, is

