Shiksha Classes Bhandara

Mathematics

Topic : Complex Numbers

MM 100

 ω is an imaginary cube root of unit. If $(1 + \omega^2)^m = (1 + \omega^2)^m$ 0.1 $(\omega^4)^m$ then least positive integral value of m is – (A) 6 (B) 5 (C) 4 (D) 3 $1 + i^2 + i^4 + i^6 + \dots + i^{2n}$ is -**Q.2** (A) positive (B) negative (C) 0 (D) cannot be determined Q.3 The product of cube root of -1 is equal to -(A) - 1(B) 0 (C) –2 (D) 4 $\frac{1-2i}{2+i} + \frac{4-i}{3+2i} =$ Q.4 (A) $\frac{24}{13} + \frac{10}{13}i$ (B) $\frac{24}{13} - \frac{10}{13}i$ (C) $\frac{10}{13} + \frac{24}{13}i$ (D) $\frac{10}{13} - \frac{24}{13}i$ Q.5 The square roots of 7 + 24i are $(A) \pm (3 + 4i)$ (B) $\pm (3 - 4i)$ $(C) \pm (4 + 3i)$ $(D) \pm (4 - 3i)$ The smallest positive integer n for which Q.6 $(1+i)^{2n} = (1-i)^{2n}$ is – (A) 4 (B) 8 (C) 2 (D) 12 **Q.7** $Z \in C$ satisfies the condition $|z| \ge 3$. Then the least value of $\left|z + \frac{1}{z}\right|$ is (A) 3/8 (B) 8/5 (C) 8/3 (D) 5/8 If |z| = 5, then the points representing the complex Q.8 number $-i + \frac{15}{2}$ lies on the circle – (A) whose centre is (0, 1) and radius = 3 (B) whose centre is (-1, 0) and radius = 15 (C) whose centre is (1, 0) and radius = 15 (D) whose centre is (0, -1) and radius = 3 0.9 The equation $Z^3 + iZ - 1 = 0$ has (A) three real roots (B) one real root (C) no real roots (D) no real or complex roots **Q.10** $Z_1 \neq Z_2$ are two points in an Argand plane. If a $|Z_1| = b|Z_2|$, then the point $\frac{aZ_1 - bZ_2}{aZ_1 + bZ_2}$ is (A) in the I quadrant (B) in the III quadrant (D) on the imaginary axis (C) on the real axis **Q.11** The conjugate complex number of $\frac{2-i}{(1-2i)^2}$ is – $(A)\left(\frac{2}{25}\right) + \left(\frac{11}{25}\right)i \qquad (B)\left(\frac{2}{25}\right) - \left(\frac{11}{25}\right)i$ (C) $\left(-\frac{2}{25}\right) + \left(\frac{11}{25}\right)i$ (D) $\left(-\frac{2}{25}\right) - \left(\frac{11}{25}\right)i$ **Q.12** The solution of the equation 2z = |z| + 2i, where z is a complex number, is -

	(A) $z = \frac{\sqrt{3}}{3} - i$	(B) $z = \frac{\sqrt{3}}{3} + i$
	(A) $z = \frac{1}{3} - 1$	(B) $z = \frac{1}{3} + 1$
	(C) $z = \frac{\sqrt{3}}{3} \pm i$	(D) None of these
Q.13	For any two non zero compl	ex numbers z_1 , z_2 , the value of
	(z_1, z_2)	
	$(z_1 + z_2) \left \frac{z_1}{ z_1 } + \frac{z_2}{ z_2 } \right $ is	
	(A) less than $2(z_1 + z_2)$	
	(B) greater than $2(z_1 + z_2)$	
	(C) greater than or equal to 2	
~	(D) less than or equal to 2 ($ z_1 + z_2 $
Q.14	The value of i^i is –	(B) $-\omega^2$
	(A) ω (C) $\pi/2$	(D) None of these
Q.15	Principal argument of	
	$2(1-i\sqrt{3})(1+i)$	
	$z = \frac{2(1-i\sqrt{3})(1+i)}{(\sqrt{3}-i)^3(-1+i)^4}$	
	is –	
	(A) $\frac{\pi}{4}$	(B) $\frac{-5\pi}{12}$
		12
0	(C) $\frac{2\pi}{3}$	(D) $-\frac{7\pi}{12}$
	z = z - (1 + i)	12
Q.16	If $\frac{z - (1 + i)}{z + (1 + i)}$ is pure imagina	ary, then z lies on –
	(A) a circle	(B) a straight line
Q.17	(C) a line segment If α , β are the complex cube	(D) none of these
Q.17	$\alpha^3 + \beta^3 + \alpha^{-2} \beta^{-2} =$	Tools of unity, then
	(A) 0	(B) 3
O 10	(C) -3	(D) None of these
Q.18	If z_1 and z_2 are two complex numbers such that $ z_1 = z_2 + z_1 - z_2 $, then	
		/
	(A) $\operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0$	(B) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = 0$
	(C) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = \operatorname{Im}\left(\frac{z_1}{z_2}\right)$	(D) none of these
Q.19	The value of $\frac{4(\cos 75^\circ + i \sin 75^\circ)}{0.4(\cos 30^\circ + i \sin 30^\circ)}$ is –	
	(A) $\frac{10}{\sqrt{2}}(1+i)$	(B) $\frac{10}{\sqrt{2}}(1-i)$
	(C) $\frac{5}{\sqrt{2}}(1+i)$	(D) None of these
Q.20	The points represented by the complex numbers	
	1 + i, -2 + 3i, (5/3) i on the Argand diagram are (A) Vertices of an equilateral triangle	
	(B) Vertices of an isosceles triangle	
	(C) Collinear	-
	(D) None of these	

For Q.21-Q.25 :

- The answer to each question is a NUMERICAL VALUE.
- $\begin{array}{ll} \textbf{Q.21} & \text{If } \omega \text{ is an imaginary cube root of unity, then} \\ & (1-\omega) \left(1-\omega^2\right) \left(1-\omega^4\right) \left(1-\omega^5\right) \text{ is equal to} \\ \textbf{Q.22} & \text{The smallest positive integral value of } n & \text{for which the} \end{array}$
- Q.22 The smallest positive integral value of n for which the complex number $(1 + \sqrt{3}i)^{n/2}$ is real, is
- **Q.24** The polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has real coefficients and f(2i) = f(2 + i) = 0. The value of (a + b + c + d) equals
- **Q.25** The value of $\left(\frac{1+i}{\sqrt{2}}\right)^8 + \left(\frac{1-i}{\sqrt{2}}\right)^8$ is equal to

