

Std. XII Sci.: **CHEMISTRY**

PRELIMINARY QUESTION PAPER - 1

Time: 3 Hours Total Marks: 70

Genera	Instr	uctions:
--------	-------	----------

- The question paper is divided into four sections. i.
- Section A: Q.No.1 contains Ten multiple choice type of questions carrying One mark each. ii. Q.No.2 contains Eight very short answer type of questions carrying One mark each.
- iii. Section B: Q.No.3 to Q. No. 14 contains Twelve short answer type of questions carrying Two marks each
- Section C: Q.No.15 to Q. No. 26 contains Twelve short answer type of questions carrying Three iv. marks each.
- Section D: Q.No. 27 to Q. No. 31 contains Five long answer type of questions carrying Four marks v.
- Use of log table is allowed. Use of calculator is not allowed. vi.
- Figures to the right indicate full marks. vii.
- viii. Answers to the questions of section A, B, C and D should be written in the same answer book.
- For each MCQ, correct answer must be written along with its alphabet. ix. evaluation.
- Draw well labeled diagrams and write balanced equations wherever necessary. Χ.
- Every new section must be started on a new page. Xİ.
- Given data: xii.

Atomic mass of C = 12, H = 1, O = 16,

Atomic number (Z): Mn = 25, Fe = 26, Ce = 58, Ar = 18,

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ or } 0.083 \text{ L bar K}^{-1} \text{ mol}^{-1}$

SECTION A								
Q.1. i.	Select and write the correct answer: The number of atoms per unit cell of body centred (A) 1 (B) 2	cube is:		(D)	[10]			
ii.	Isotonic solutions have (A) equal temperature (C) equal volume	(B) (D)	equal osmotic pressure equal amount of solute					
iii.	The enthalpy of formation for all elements in their (A) unity (C) less than zero	standard (B) (D)	states is zero more than zero					
iv.	The formula of magnetite is (A) Fe_3O_4 (B) Fe_2O_3	(C)	FeCO ₃	(D)	FeS_2			
v.	The crystal field splitting energy for octahedral (related as (B) $\Delta_t = 1/2 \Delta_o$							
vi.	When vapours of a secondary alcohol are passed or (A) an alkene (C) an aldehyde	(B) (D)	ed copper at 573 K, a carboxylic acid a ketone	the pr	roduct formed is			
vii.	Lotus effect is the basic of (A) sunscreen lotions (B) medieval pottery (C) self-cleaning windows (D) water-purification techniques				iques			
viii.	Which one of the following compounds does NOT (A) CH ₃ - CH ₂ - NH ₂ (C) (CH ₃ - CH ₂) ₃ N	react war (B) (D)	with acetyl chloride? $(CH_3 - CH_2)_2NH$ $C_6H_5 - NH_2$					

Std. XII Sci.: CHEMISTRY

PRELIMINARY QUESTION PAPER - 1

- ix. Which of the following expressions represent molar conductivity of Al₂(SO₄)₃?
 - (A) $3\lambda_{Al^{3+}}^0 + 2\lambda_{SO_4^{2-}}^0$

(B) $2\lambda_{Al^{3+}}^0 + 3\lambda_{SO_4^{2-}}^0$

(C) $1/3\lambda_{Al^{3+}}^0 + 1/2\lambda_{SO_4^{2-}}^0$

- (D) $\lambda_{Al^{3+}}^{0} + \lambda_{SO_4^{2-}}^{0}$
- x. The solubility product for a salt of the type AX is 4×10^{-8} . What is the molarity of its saturated solution?
 - (A) $4 \times 10^{-4} \,\mathrm{M}$
- (B) $2 \times 10^{-4} \text{ M}$
- (C) $16 \times 10^{-16} \,\mathrm{M}$
- (D) $2 \times 10^{-16} \,\mathrm{M}$

Q.2. Answer the following:

[8]

i. Complete the following reaction:

$$CH_3 - CH = CH_2 + HBr \xrightarrow{Peroxide} \underbrace{\qquad \qquad}_{(major)} + \underbrace{\qquad \qquad}_{(minor)}$$

- ii. Write the chemical reaction for Rosenmund reduction of benzoyl chloride.
- iii. Define the term: Monomer
- iv. Rate constant for the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ is 4.98×10^{-4} s⁻¹. Find the order of reaction.
- v. Why oxygen cannot exhibit higher oxidation state?
- vi. Write the type of isomerism exhibited by $[Co(NH_3)_5(NO_2)]^{2+}$ and $[Co(NH_3)_5ONO]^{2+}$ pair of complex ion.
- vii. Which alloy is used in the Fischer-Tropsch process in the synthesis of gasoline?
- viii. The vapour pressure of a pure liquid is 0.043 bar at a certain temperature. When a nonvolatile solute is dissolved into it, the vapour pressure of the solution is found to be 0.041 bar. What is the relative lowering of vapour pressure?

SECTION B (Attempt any Eight)

[16]

- Q.3. Differentiate between order and molecularity of a reaction.
- Q.4. What is its effect of Frenkel defect on density and electrical neutrality of the crystal?
- Q.5. What is Wurtz-Fittig reaction? Give an example.
- Q.6. Give reason: On complete hydrolysis, DNA gives equimolar quantities of adenine and thymine.
- Q.7. Derive the mathematical expression between molar mass of a non-volatile solute and elevation of boiling point.
- Q.8. Calculate the EAN of the following complexes and identify which obey EAN rule and which do not. i. $[Fe(CN)_6]^{3-}$ ii. $Cr(CO)_6$
- Q.9. Bond dissociation enthalpy of F_2 (158.8 kJ mol⁻¹) is lower than that of Cl_2 (242.6 kJ mol⁻¹). Why?
- Q.10. Explain Dow's process for the preparation of phenol.
- Q.11. Write a short note on carbylamines test.
- Q.12. Explain the preparation of carboxylic acids by alkaline hydrolysis of esters.
- Q.13. Calculate the standard enthalpy of:

$$N_2H_{4(g)} + H_{2(g)} \longrightarrow 2NH_{3(g)}$$

if $\Delta H^{\circ} (N-H) = 389 \text{ kJ mol}^{-1}$, $\Delta H^{\circ} (H-H) = 435 \text{ kJ mol}^{-1}$, $\Delta H^{\circ} (N-N) = 159 \text{ kJ mol}^{-1}$

Q.14. What current strength in amperes will be required to produce 2.4 g of Cu from $CuSO_4$ solution in 1 hour? Molar mass of Cu = 63.5 g mol^{-1} .

Std. XII Sci.: CHEMISTRY PRELIMINARY QUESTION PAPER - 1

SECTION C (Attempt any Eight)

[24]

- Q.15. Draw structures of XeO₃, XeOF₄ and XeF₂.
- Q.16. Write the names of the monomers used in the preparation of nylon 6,6. Draw the structure of polymer nylon 6,6 and write its uses.
- Q.17. Write the information obtained about nanomaterials with the help of following techniques.
 - i. Scanning Electron Microscopy (SEM)
 - ii. Transmission Emission Microscopy (TEM)
 - iii. Fourier Transform Infrared Spectroscopy (FTIR)
- Q.18. i. Write the reaction for the preparation of Propan-1-amine from butanamide.
 - ii. Draw a neat diagram for the Haworth formula of maltose.
- Q.19. i. How is anisole prepared from phenol?
 - ii. Give two uses of alcohols.
- Q.20. Using VBT, explain the structure of square planar complex: $[Ni(CN)_4]^{2-}$
- Q.21. Write reactions involved in preparation of potassium dichromate from chrome iron ore.
- Q.22. i. Why is Sc^{3+} ion colourless?
- ii. Write a note on silver mirror test.
- Q.23. i. What is Stephen's reaction?
 - ii. Draw the structure of 4-Chloropentan-2-one.
- Q.24. The half life of a first order reaction is 900 min at 820 K. Estimate its half life at 720 K if the activation energy is 250 kJ mol⁻¹.
- Q.25. What can be said about the spontaneity of reactions when:
 - i. ΔH and ΔS are both negative?
- ii. ΔH and ΔS are both positive?
- iii. ΔH is negative and ΔS is positive?
- Q.26. Calculate the pH of buffer solution containing 0.06 mol NaF per litre and 0.018 mol HF per litre. $[K_a = 7.2 \times 10^{-4} \text{ for HF}]$

SECTION D (Attempt any Three)

[12]

- Q.27. i. State and explain Henry's law.
 - ii. How is dioxygen prepared in laboratory from following compounds?
 - a. Ag_2O

- PbO_2
- Q.28. i. Derive the equation: $W = -P_{ext}\Delta V$
 - ii. Explain conjugate acid-base pair with an example.
- Q.29. i. Write Nernst equation.
 - ii. What part of Nernst equation represents the correction factor for nonstandard state conditions?
 - iii. Derive the relation between Gibbs energy change and emf of a cell.
- Q.30. i. What is lanthanoid contraction?
 - ii. Write the electronic configuration of gadolinium (Z=64).
 - iii. Cu crystallizes in fcc unit cell with edge length of 495 pm. What is the radius of Cu atom?
- Q.31. i. Define: Optical activity

- ii. Draw structures of enantiomers of 2-bromobutane using wedge formula.
- iii. Convert the following using appropriate reagent:
 - a. Iodomethane to nitromethane
 - b. Ethyl bromide to ethanol

