Shiksha Classes Bhandara

Mathematics

Topic : Binomial Theorem

Given that the term of the expansion $(x^{1/3} - x^{-1/2})^{15}$ **Q.1** (which does not contain x is 5 m where $m \in N$, then m =(A) 1100 (B) 1010 (C) 1001 (D) none The coefficient of x^{49} in the expansion of (x - 1)Q.2 $\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^2}\right)\dots\left(x-\frac{1}{2^{49}}\right)$ is equal to ($(A) - 2\left(1 - \frac{1}{2^{50}}\right)$ (B) + ve coefficient of x (C) – ve coefficient of x (D) – $2\left(1-\frac{1}{2^{49}}\right)$ If |x| < 2/3 then the fourth term in the expansion of Q.3 ($\left(1+\frac{3}{2}x\right)^{1/2}$ is (A) $\frac{27}{128}x^3$ (B) $-\frac{27}{128}x^3$ (C) $\frac{81}{256}$ x³ $(D) - \frac{81}{256}x^3$ If in the expansion of $\left(2^{x} + \frac{1}{4^{x}}\right)^{n}$, $T_{3} = 7T_{2}$ and sum of Q.4 the binomial coefficients of second and third terms is 36, then the value of x is – (A) - 1/3(B) - 1/2(D) 1/2 (C) 1/3 The greatest coefficient in the expansion of $(1 + x)^{2n}$ is Q.5 (A) $\frac{1.3.5....(2n-1)}{n!} \cdot 2^n$ (B) ${}^{2n}C_{n-1}$ (C) ${}^{2n}C_{n+1}$ (D) None of these (The coefficient of x^4 of in the expansion Q.6 $(1 + 5x + 9x^2 + \dots \infty) (1 + x^2)^{11}$ is -(A) ${}^{11}C_2 + 4 {}^{11}C_1 + 3$ (B) ${}^{11}C_2 + 3 {}^{11}C_1 + 4$ (C) $3^{11}C_2 + 4^{11}C_1 + 3$ (D) 171 (Number formed by last two digits of the number $(17)^{256}$ is Q.7 (A) 81 (B) 80 (C) 91 (D) 93 Q.8 The value of cube root of 1001 up to five decimal places is (A) 10.03333 (B) 10.00333 (C) 10.00033 (D) None of these The coefficient of $\lambda^n \mu^n$ in the expansion of (Q.9 $\left[(1+\lambda) (1+\mu) (\lambda+\mu) \right]^n$ is (A) $\sum_{r=0}^{n} C_{r}^{2}$ (B) $\sum_{r=0}^{n} C_{r+2}^2$ (C) $\sum_{r=1}^{n} C_{r+3}^{2}$ (D) $\sum_{r=1}^{n} C_{r}^{3}$ **Q.10** The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$, is (A) 440 (B) 770

	(C) 990	(D) 1001	
Q.11	The coefficient of the ter	rm independent of x in the	
-	$(\Gamma_{1})^{10}$		
	expansion of $\left \sqrt{\frac{x}{2} + \frac{3}{2}} \right $	is	
	$\left(\sqrt{3} 2x^2\right)$		
	(A) 5/4	(B) 7/4	
~	(C) 9/4	(D) none of these	
J .12	The expansion of $(1 + x)^n$	has 3 consecutive terms with	
	coefficients in the ratio 1 :	2:3 and can be written in the	
	form ${}^{n}C_{k} : {}^{n}C_{k+1} : {}^{n}C_{k+2}$. If	he sum of all possible values of	
	(n + k) is –		
	(A) 18 (C) 28	(B) 21 (D) 22	
) 13	(C) 20 The sum of the coefficie	(D) 52	
2.15	expansion of $(2x - y + z)^{20}$	in which y do not appear at all	
	while x appears in even powers and z appears in odd		
	powers is –		
		$2^{20} - 1$	
	(A) 0	(B) $\frac{-1}{2}$	
		$3^{20}-1$	
	(C) 2 ¹⁹	(D) $\frac{1}{2}$	
Q.14	The coefficient of x^{53} in the	expansion,	
	100 100 m m m i		
	$\sum_{m} 100 C_m (x-3)^{100-m}$	2^{m} is	
\mathcal{O}	m = 0		
	(A) ${}^{100}C_{47}$	(B) ${}^{100}C_{53}$	
7	(C) $-{}^{100}C_{53}$	(D) $- {}^{100}C_{100}$	
Q.15	The sum of the co-efficient	of all the even powers of x in	
	the expansion of $(2x^2 - 3x - 3x)$	$(+1)^{11}$ is:	
	(A) 2.6^{10}	(B) 3.6^{10}	
2.16	(C) 6^{11}	(D) none	
2.10	If the coefficients of second, third and fourth terms in the expansion of $(1 + x)^{20}$ are in A.B. then		
	$(A) 2n^2 - 9n + 7 = 0$	(B) $2n^2 + 5n + 7 = 0$	
	$(C) n^2 - 9n + 7 - 0$	(D) None of these	
	(103.)	$7^{3} + 2 \times 10 \times 7 \times 25$	
Q.17	The value of $\frac{(18^{\circ} + 18^{\circ})}{26^{\circ}}$	$\frac{1}{2} + \frac{3}{10} \times 10 \times 1 \times 23)$	
	$3^\circ + 6 \times 243 \times 10^\circ$	$2+15\times81\times4+20\times27\times8$	
	$+15 \times 9 \times 16 + 6 \times 3 \times 32 + 64$		
	is –		
	(A) 0 $(C) 2$	(B) I (D) None of these	
ר 1 8	(C) 2 If $(1 + y)^n = a + a y + a y^2$	(D) None of these $2^{2} + 2^{2} + 2^{2} + 2^{2}$	
2.10	$n(1 + x) = a_0 + a_1 x + a_2 x$	$+ \ldots + a_n x$, then	
	$\left(1+\frac{a_1}{a_1}\right)\left(1+\frac{a_2}{a_2}\right)\left(1+\frac{a_3}{a_3}\right)$	$\left(1+\frac{a_n}{a_n}\right)$ is equal to	
	$(1 a_0)(1 a_1)(1 a_2)$	$\left(\begin{array}{c} a_{n-1} \end{array} \right)$ is equal to	
	n ⁿ	$(n+1)^n$	
	(A) $\frac{-}{n!}$	(B) $\frac{(1+1)^{n}}{n!}$	
	n. n ⁿ⁺¹		
	(C) $\frac{11}{(n+1)!}$	(D) none of these.	
	(n+1)!		

Q.19 The value of $\left\{\frac{3^{2003}}{28}\right\}$, where $\{\cdot\}$ denotes the fractional part, is equal to (A) 15/28 (B) 5/28 (C) 19/28 (D) 9/28 **Q.20** In the expansion of $\left(\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{\sqrt{a}}}\right)^{21}$ the term containing same powers of a and b is – (A) 11th (B) 13th (C) 12th (D) 6th

- For Q.21-Q.25 :
 - The answer to each question is a NUMERICAL VALUE.
- **Q.21** If the coefficients of $x^7 \& x^8$ in the expansion of $\left[2 + \frac{x}{3}\right]^n$ are equal, then the value of n is –
- **Q.22** If $6^{83} + 8^{83}$ is divided by 49, then the remainder is –
- **Q.23** If the 3rd term in the expansion of $(x + x^t)^5$ is 10⁶ where $t = \log_{10} x$ then the number of possible values of x is –

Q.24
$$\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5$$
 is a polynomial of the order of –

Q.25 In the binomial $(2^{1/3} + 3^{-1/3})^n$, if the ratio of the seventh term from the beginning of the expansion to the seventh term from its end is 1/6, then n equal to –

