Shiksha Classes Bhandara

Mathematics

Topic : Areas Bounded by Curves

MM 100

- Area bounded by the curves $y = \sin^{-1}(\sin x)$ and 0.1 $|y| = \sqrt{\frac{\pi^2}{4} - \left(x - \frac{\pi}{2}\right)^2}$ is -(A) $\frac{\pi^2}{4} \left(\frac{\pi}{2} + 1\right) (\text{unit})^2$ (B) $\frac{\pi^2}{2} \left(\frac{\pi}{2} + 1\right) (\text{unit})^2$ (C) $\frac{\pi^2}{2} \left(\frac{\pi}{4} + 1\right) (\text{unit})^2$ (D) None of these Q.2 The area of the figure bounded by $f(x) = \sin x$, $g(x) = \cos x$ x in the first quadrant is – (B) $\sqrt{3}+1$ (A) $2(\sqrt{2}-1)$ (C) $2(\sqrt{3}-1)$ (D) None of these Area bounded by the parabola $y = x^2 - 2x + 3$ and tangents Q.3 drawn to it from the point P(1, 0) is equal to (B) $\frac{4\sqrt{2}}{3}$ sq. units (A) $4\sqrt{2}$ sq. units (D) $\frac{16}{3}\sqrt{2}$ sq. units (C) $\frac{8\sqrt{2}}{2}$ sq. units The area bounded by the curve $y = x^2 + 4x + 5$, the axes **Q.4** of co-ordinates & the minimum ordinate is: (A) $3\frac{2}{3}$ (B) $4\frac{2}{2}$ (C) $5\frac{2}{2}$ (D) none Q.5 Area bounded by the curves y = sinx, tangent drawn to it at x = 0 and the line $x = \pi/2$, is equal to (A) $\frac{\pi^2 - 4}{2}$ sq. units (B) $\frac{\pi^2 - 4}{4}$ sq. units (C) $\frac{\pi^2 - 2}{4}$ sq. units (D) $\frac{\pi^2 - 2}{2}$ sq. units The area between the curves $y = \sqrt{x}$ and y = x is **Q.6** (A) 1/3 (B) 1/6 (C) 2/3 (D) 1 Value of the parameter a such that the area bounded by **Q.7** $y = a^2 x^2 + ax + 1$, coordinate axes and the line x = 1, attains it's least value, is equal to (A) - 1/4(B) - 1/2(C) - 3/4(D) - 1Area intercepted by the curves $y = \cos x$, $x \in [0, \pi]$ and Q.8 $y = \cos 2x, x \in [0, \pi], is$ (B) $\frac{3\sqrt{3}}{2}$ (D) $\frac{3\sqrt{3}}{}$ 3π (C) A point P moves in xy plane in such a way that Q.9
- (A point P moves in xy plane in such a way that [|x|] + [|y|] = 1, where [.] denotes the greatest integer function. Area of the region representing all possible positions of the point P is equal to (A) 4 sq. units (B) 16 sq. units

(C)
$$2\sqrt{2}$$
 sq. units (D) 8 sq. units
Q.10 The area bounded by the curve $y = f(x)$, the x-axis & the ordinates $x = 1$ & $x = b$ is $(b - 1)$ sin $(3b + 4)$. Then $f(x)$ is:
(A) $(x - 1) \cos (3x + 4)$ (C) sin $(3x + 4) + 3 (x - 1) \cdot \cos (3x + 4)$ (D) none
Q.11 The area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
and the ordinates $x = \pm ae$ where $b^2 = a^2 (1 - e^2)$ and $e < 1$, is given by –
(A) 2ab $(e\sqrt{1-e^2} + \sin^{-1}e)$ (B) 2ab $(e\sqrt{1-e^2} - \sin^{-1}e)$
(C) ab $(e\sqrt{1-e^2} - \sin^{-1}e)$ (D) None of these
Q.12 Area enclosed by the curve $y = f(x)$ defined parametrically
as $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ is equal to
(A) π sq. units (B) $\pi/2$ sq. units
(C) $\frac{3\pi}{4}$ sq. units (D) $\frac{3\pi}{2}$ sq. units
(C) 2 (D) 5
Q.14 The area bounded by the curve $x = 2 - y - y^2$ and y-axis
is-
(A) 9/2 (B) 7/2
(C) 5/2 (D) 5
Q.14 The area bounded by the curve $x = 2 - y - y^2$ and y-axis
is-
(A) 9/2 (B) 7/2
(C) 5/2 (D) None of these
Q.15 Consider two variable parabolas $y^2 = 4ax$, $x^2 = 4ay$,
 $a \in [1, 2]$ and A(a) is area bounded by them, then
(A) A(1) is maximum (B) A(2) is maximum
(C) A (3/2) is minimum (D) A(2) is minimum
Q.16 The area of the loop of the curve $x^2 + (y - 1)y^2 = 0$ is
equal to
(A) 8/15 sq. units (D) none of these
Q.17 The area bounded by $y = x^3 - 4x$ and x-axis is $-$
(A) 4 (B) 8
(C) 16 (D) None of these
Q.18 The smaller of the areas bounded by the curves $x^2 + y^2 = 4$
and $y^2 = 2(x + 2)$ is
(A) $\frac{8}{3} + \pi$ (B) $\frac{16}{3} + 2\pi$
(C) $2\pi - \frac{16}{3}$ (D) $\pi - \frac{8}{3}$
Q.19 Area bounded by the parabola $x = (y - 2)^2 + 1$, the tangent
to it at the point P(2, 3) and the x-axis is equal to
(A) 9 sq. units (B) 6 sq. units
(C) 3 sq. units (D) none of these
Q.17 The area bounded by the parabola $x = (y - 2)^2 + 1$, the tangent
to it at the point P(2, 3) and the x-axis is equal to
(A) 9 sq. units (D) none of these
Q.19 Area bounded by the parabola $x = (y - 2)^2 + 1$, the tangent
to it at the point P(2, 3) and the x-axis is equal to
(A) 9 sq. units (D) none of these

(B) 1

(D) 7/10

(A) 17/10

(C) 17/5

For Q.21-Q.25 : The answer to each question is a NUMERICAL VALUE.

Q.21 Area bounded by the curves
$$y = \begin{bmatrix} \frac{x^2}{64} + 2 \end{bmatrix}$$

([.] denotes the greatest integer function), y = x - 1 and x = 0 above the x-axis is -

- **Q.22** The area bounded by the parabola $(y 2)^2 = x 1$, the tangent to it at the point P (2, 3) and the x axis is equal to
- **Q.23** The area bounded by $y = \log_e x$, x-axis and the ordinate x = e is given by –
- **Q.24** The area bounded by the curve $y = \sin^{-1}x$ and the lines x = 0, $|y| = \pi/2$ is –
- **Q.25** The total area enclosed by the lines y = |x|, y = 0 and |x| = 1 is –

