SHIKSHA CLASSES

Sub Clas	ject s	t : Maths - I Question : XI 7 : Conic	n Pap c Sections	er Total Marks :25 Time : 1 Hour
Q.1	:C i)	SECTION - AShoose the correct option :4If the parabola $y^2 = 4ax$ passes through (3,2) then the length of its latus rectum	Q.7 :	quadrant whose ordinate is 3. Find the equation of the hyperbola referred to its principal axes which passes through the points (6, 9) and (3, 0)
		is a) $\frac{2}{3}$ b) $\frac{4}{3}$: Q.8 :	Solve the following : (ANY 3) 9 Show that the line $3x - 4y + 10 = 0$ is a tangent to the hyperbola $x^2 - 4y^2 = 20$.
	ii)	c) $\frac{1}{3}$ d) 4 Centre of the ellipse $9x^2 + 5y^2 - 36x - 50y - 164 = 0$ is at	Q.9 :	Also, find the point of contact. A line touches the circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$. Show that its equation is $y = \pm (x + 2)$
0.2	:	a) (2, 5) b) (1, -2) c) (-2, 1) d) (0, 0) Solve the following questions: 2	Q.10 :	Find the equation of the hyperbola in the standard form if length of conjugate axis is 5 and distance between foci is 13.
	i) ii)	Find the equation of the parabola whose diretrix is $x + 3 = 0$. Write the equation of the curve of ellipse.	Q.11 : Q.12 :	Find k, if the line $3x + 4y + k = 0$ touches $9x^2 + 16y^2 = 144$ Find the equation of common tangent to the perphase $x^2 = 4x$ and $x^2 = 32x$
	:	Solve the following : (ANY 3)	:	parabolas $y^2 = 4x$ and $x^2 = 32y$. <u>SECTION D</u> : Answer the following : (ANY 1) 4 Q.13 : Two tangents to the parabola $y^2 = 8x$ meet the tangents at the vertex in the points P and Q. If PQ = 4, prove that the equation of the locus of the point of intersection of two tangents is $y^2 = 8 (x + 2)$ Q.14 : Find the equation of the ellipse in standard
Q.3	:	Find the focal distance of a point on the parabola $y^2 = 16x$ whose ordinate is 2 times the abscissa.	Q.13 :	
Q.4	:	Find the area of the triangle formed by the line joining the vertex of the parabola $x^2 = 12y$ to the end points of catus rectum.	Q.14 :	
Q.5	:	Find the equation of the ellipse in standard form if distance between directrix is 18 and eccentricity is $\frac{1}{3}$		form if passing through the points $(-3, 1)$ and $(2, -2)$.
Q.6	Ċ	Find the equation of the tangent to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at the point in a first		* * *

