SHIKSHA CLASSES

Subject : Math -I Class : XII **BOARD ANSWER PAPER** Topic: 4. Pair of Straight Line **Total Marks : 20**

[Section - A (2 Marks)] Select and write the correct answer from the given alternatives for each of the following : 1) The value of k if one of the lines given by $6x^2 + kxy + y^2 = 0$ is 2x + y = 0 is **Ans.** : c) 5 slope of line 2x + y = 0 is m = -2 $6x^2 + kxy + y^2 = 0$ dividing by x^2 $\therefore \quad 6+k\frac{y}{r}+\frac{y^2}{r^2}=0 \text{ put } \frac{y}{r}=m$ $\therefore 6+km+m^2=0$(1) Put m = -2 in equation (1) $\therefore 6+k(-2)+(-2)^2=0$ 6 - 2k + 4 = 0.... $\therefore \quad -2k+10=0 \qquad \therefore \quad -2k=-10$ $\therefore k = 5$ $\therefore 2k = 10$ 2) The equation of the lines passing through the point (1,2)and parallel to coordinate axes. **Ans.**: d) xy - y - 2x + 2 = 0Let l_1 and l_2 be the lines parallel to X and Y axes equation of l_1 is y = 2 i.e. y-2=0 equation of l_2 is x=1 i.e. x-1=0The combined equation of l_1 and l_2 is (y-2)(x-1)=0 $\therefore xy - y - 2x + 2 = 0$ [Section - B (4 Marks)] 3) Find the joint equation of the lines passing through the origin and having inclinations 60° and 120° with the X-axis. Ans. : Let l_1 and l_2 be the two required lines. Slope of the line l_1 is $m_1 = \tan 60^0 = \sqrt{3}$ The equation of l_1 is $v = \sqrt{3}x$ $\therefore \sqrt{3}x - v = 0$ (i) Slope of the line l_2 is $m_2 = \tan 120^\circ$

 $= \tan(90^{\circ} + 30^{\circ})$ $=-\cot 30^{\circ}=-\sqrt{3}$ The equation of l_2 is $v = -\sqrt{3}x$ $\sqrt{3}x + y = 0$ (ii) *.*.. The joint equations of lines l_1 and l_2 is $\left(\sqrt{3}x - y\right)\left(\sqrt{3}x + y\right) = 0$ $\therefore \quad 3x^2 - y^2 = 0$ OR Find k if the slopes of the lines represented by $kx^2 + 5xy + y^2 = 0$ differ by 1. Áns. : The given homogeneous equations is $kx^2 + 5xv + v^2 = 0$(i) Comparing with $ax^2 + 2hxy + by^2 = 0$ $a = k, 2h = 5 \therefore h = \frac{5}{2}, b = 1$ let m_1 and m_2 are slopes of the lines $m_1 + m_2 = \frac{-2h}{h} = \frac{-2 \times \frac{5}{2}}{1} = 5,$ $m_1 m_2 = \frac{a}{b} = \frac{k}{1} = k$. But $m_1 - m_2 = 1$ (given) we know that $(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4 m m_2$ $(1)^2 = (5)^2 - 4(k) \therefore 4k = 24 \therefore k = 6$ ÷. 4) Find the joint equation of the lines 2x + y + 1 = 0 and 2x - y - 1 = 0Ans. : The joint equation is (2x + y + 1)(2x - y - 1) = 0 $4x^{2} - 2xy - 2x + 2xy - y^{2} - y + 2x - y - 1 = 0$ $\therefore 4x^2 - y^2 - 2y - 1 = 0$ [Section - C (6 Marks)]

5) Find the seperate equation of $\therefore a+2h\left(\frac{p}{a}\right)+b\left(\frac{p}{a}\right)^2=0$ $2x^2 + 7xy + 3y^2 = 0$ $2x^2 + 7xy + 3y^2 = 0$ Ans. : $\therefore 2x^2 + 6xy + xy + 3y^2 = 0$ $\therefore 2x(x+3y) + y(x+3y) = 0$ $\therefore a + \frac{2hp}{a} + \frac{bp^2}{a^2} = 0$ \therefore (x + 3v)(2x + 3v) = 0 $\therefore x + 3y = 0, 2x + 3y = 0$ $aq^2 + 2hpq + bp^2 = 0$ Hence proved. • These are the seperate equations. [Section - D (8 Marks)] OR 7) Find the joint equation of pair of lines passing The slope of one of the lines represented through the origin and perpendicular to the by the equation $ax^2 + 2hxy + by^2 = 0$ is lines given by $5x^2 + 2xy - 3y^2 = 0$ five times the other, show that $5h^2 = 9ab$. $5x^2 + 2xy - 3y^2 = 0$ Ans. : Ans. : comparing with The given homogeneous equation in $ax^2 + 2hxy + by^2 = 0$ second degree is a = 5, 2h = 2 : h = 1, b = -3 $ax^2 + 2hxy + by^2 = 0$ (i) $\therefore m_1 + m_2 = \frac{-2h}{h} = \frac{-2(1)}{3} = \frac{2}{3}$ Let m_1, m_2 be the slopes of the lines represented by equation (i) $\therefore m_1.m_2 = \frac{a}{b} = \frac{5}{2} = -\frac{5}{2}$ Given $m_1 = 5m_2$ $\therefore m_1 + m_2 = \frac{-2h}{b}, \quad m_1 \cdot m_2 = \frac{a}{b}$ Let l_1 and l_2 be the required lines. slope of line $l_1 = -\frac{1}{m}$... put $m_1 = 5m_2$ $\therefore \quad 5m_2 + m_2 = \frac{-2h}{b}, \quad 5m_2 \cdot m_2 = \frac{a}{b}$ \therefore equation of l_1 is $y = -\frac{1}{m}x$ $\therefore \quad 6m_2 = \frac{-2h}{h}, \quad 5m_2^2 = \frac{a}{h}$ $m_1 y = -x$ \therefore $x + m_1 y = 0$ $\therefore m_2 = \frac{-2h}{6h} \dots (1), m_2^2 = \frac{a}{5h} \dots (2)$ slope of line $l_2 = -\frac{1}{m_2}$ from (1) and (2) \therefore equation of l_2 is $y = -\frac{1}{m_2}x$ $\therefore \quad \frac{4h^2}{36b^2} = \frac{a}{5b} \quad \therefore \frac{h^2}{9h} = \frac{a}{5}$ $m_2 y = -x$ \therefore $x + m_2 y = 0$ *.*.. $\therefore 5h^2 = 9ab$ combined equation of l_1 and l_2 is Hence proved. 6) If one of the lines represented by $(x+m_1y)(x+m_2y)=0$ $ax^{2} + 2hxy + by^{2} = 0$ is px - qy = 0 $\therefore x^2 + m_2 xy + m_1 xy + m_1 m_2 y^2 = 0$ show that $aq^2 + 2hpq + bp^2 = 0$ $\therefore \quad x^2 + (m_1 + m_2)xy + m_1m_2y^2 = 0$ Slope of line px - qy = 0 is m = p/qAns. : $\therefore x^{2} + \left(\frac{2}{3}\right)xy + \left(-\frac{5}{3}\right)y^{2} = 0$ $ax^2 + 2hxy + by^2 = 0$ dividing by x^2 $\therefore a+2h\frac{y}{x}+b\frac{y^2}{x^2}=0 \text{ put } \frac{y}{x}=m$ $3x^2 + 2xy - 5y^2 = 0$ • 8) Show that the acute angle between the lines $a + 2hm + m^2 = 0$(1) *.*.. put m = p/q in equation (1)

$$ax^2 + 2hxy + by^2 = 0$$
 is

$$\theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

Hence find the condition that lines are i) coincident

ii) perpendicular

Ans. :

The given homogenous equation in seocnd degree is $ax^2 + 2hxy + by^2 = 0$ (i) Let m_1 and m_2 be the slopes of lines (i) $\therefore m_1 + m_2 = -\frac{2h}{b}, m_1m_2 = \frac{a}{b}$ $(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1m_2$

$$(m_{1} - m_{2})^{2} = (m_{1} + m_{2})^{2} - 4m_{1}m_{1}$$
$$= \left(\frac{-2h}{b}\right)^{2} - 4\frac{a}{b}$$
$$= \frac{4h^{2}}{b^{2}} - \frac{4a}{b} = \frac{4h^{2} - 4ab}{b^{2}}$$
$$\therefore |m_{1} - m_{2}| = \left|\frac{2\sqrt{h^{2} - ab}}{b}\right|$$

If θ is the acute angle between the lines then.

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right| = \left| \frac{\frac{2\sqrt{h^2 - ab}}{b}}{1 + \frac{a}{b}} \right|$$
$$= \left| \frac{\frac{2\sqrt{h^2 - ab}}{b}}{\frac{a + b}{b}} \right| = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$
$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

$$\theta = \tan^{-1} \frac{2\sqrt{h^2 - ab}}{a + b}$$

i) If lines are coincident then $\theta = 0$

$$\tan 0 = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$
$$= \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

$$\therefore 2\sqrt{h^2 - ab} = 0$$

$$\therefore h^2 - ab = 0$$

i) If lines are perpendicular then $\theta = 90^{\circ}$.

$$\therefore \tan 90 = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

$$\therefore \infty = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

$$\therefore \infty = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

$$\therefore a + b = 0$$

OR
If fhe angle betyeen lines represented by
 $2x - 5xy + 3y = 0$ then show that
 $100 (h^2 - ab) = (a + b)$.
Ans : Let 0 is angle between the lines
 $ax^2 + 2hxy + by^2 = 0$ is equal to the angle
between the lines $2x^2 - 5xy + 3y^2 = 0$

$$\therefore 1 = 2, 2h = -5, b = 3$$

$$\therefore h = -\frac{5}{2}$$

$$\therefore h^2 - ab = \left(\frac{5}{2}\right)^2 - 2 \times 3$$

$$= \frac{25}{4} - \frac{6}{1} = \frac{25 - 24}{4} = \frac{1}{4}$$

$$\therefore \sqrt{h^2 - ab} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

$$\therefore \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \left| \frac{2 \times \frac{1}{2}}{2 + 3} \right|$$

$$\therefore \frac{2\sqrt{h^2 - ab}}{a + b} = \frac{1}{5}$$

$$10\sqrt{h^2 - ab} = a + b$$

$$\therefore \left| 100(h^2 - ab) = (a + b)^2 \right|$$

Hence proved.

* * *

