Ê	SHIKSHA CLASSES	
Subjec Class	et : GeometryQuestion PaperTotal Marks : 20: X4. Geometric ConstructionTime : 1 Hour	
Q.1A)	Choose the correct alternative from objectives given below.	2
1)	The maximum number of tangents that can be drawn to a circle from a point out side it is.	
	a) 3 b) 2 c) one and only one d) 0	
2)	What is the point of concurrence of the altitudes of a triangle known as?	
	a) Circumference b) In centre	
	c) Orthocenter d) Centroid	
B)	Solve the following question.	1
	Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it.	
Q 2 A) A	Attempt any ONE of the following.	2
1)	Draw a circle with center 'O' and radius 3.5 cm. Take a point P at a distance 5.7 cm from the center. Draw tangents to circle from point P.	
2)	Draw a circle of radius 3.6cm. Draw a tangent to the circle at any point on it without using centre.	
$\mathbf{O} 2 \mathbf{B} \mathbf{A}$	Attempt any ONE of the following.	2
	Draw seg $PO = 7$ cm. Divide it in the ratio 3:2.	
2)	\triangle ABC ~ \triangle PQR, in \triangle ABC, AB = 5.4 cm, BC = 4.2 cm, AC = 6.0 cm. AB : PQ = 3 : 2. Construct \triangle ABC and \triangle PQR.	
Q.3 A)	Attempt any ONE of the following.	3
4)	Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance of 7.3 cm from the centre.	
2)	Draw a circle with centre O and radius 3cm. Take a point P at a distance of 7cm from the centre. Draw tangents to the circle from point P.	

Q.3 B) Attempt any ONE of the following.

1) Draw a circle of radius 3.5 cm. Take a point R at a distance of 7cm from the centre. Draw tangents to the circle from point R. 3

4

3

2) Construct any $\triangle ABC$ construct $\triangle A'B'C'$ such that AB : A'B = 5 : 3 and

 $\Delta ABC \sim \Delta A'BC'$

Q.4: Attempt any ONE of the following.

1) $\Delta PQR \sim \Delta LTR$. In ΔPQR , PQ = 4.2cm QR = 5.4cm PR = 4.8cm. Construct ΔPQR and ΔLTR , Such that $\frac{PQ}{LT} = \frac{3}{4}$.

2) $\triangle ABC \sim \triangle APQ$ In $\triangle ABC$, AB = 6.0 cm, $\angle BAC = 110^{\circ}$, CA = 5.5 cm. $\frac{BA}{PA} = \frac{5}{3}$ construct $\triangle APQ$.

Q. 5 : Attempt any ONE of the following.

- 1) Draw $\triangle ABC$ with side BC = 6cm, $\angle B = 45^{\circ}$, $\angle A = 100^{\circ}$. construct a triangle whose sides are $\frac{4}{7}$ times the corresponding sides of $\triangle ABC$.
- 2) $\triangle AMT \sim \triangle AHE$. In $\triangle AMT$, AM = 6.3 cm, $\angle TAM = 50^{\circ}$, AT = 5.6 cm $\frac{AM}{AH} = \frac{7}{5}$ construct $\triangle AHE$.