

Sub. : Maths. Std. X (CBSE)		Question Paper 4 : Quadratic equations.			Total Marks : 30 Time : 1 hour	
		Section : A (Ea	ch 1	Mark)	7	
Multiple choice Questions (MCQs).						
Q.1 : Ev	ery quadratic polynomia	al can have at most		\sim	\mathbf{N}	
a)	three zeros b	o) one zero	c)	two zeros	d)	None of these
Q.2 : If y	$x^2 + 5px + 16$ has no real	l roots, then				
a)	$p > \frac{8}{5}$ b	$\frac{-8}{5}$	c)	$p < \frac{-8}{5}$	d)	None of these
Q.3 : Fo	or $ax^2 + bx + c = 0$, which	h of the following	state	ment is wrong?		
a)	If $b^2 - 4ac$ is a perfect	t square, the roots	are	rational.		
b)	If $b^2 = 4ac$, the roots	are real and equa	1.			
c)	If $b^2 - 4ac$ is negative	e, no real roots exis	st.			
d)	If $b^2 = 4ac$, the roots	are real and uneq	ual.			
	sitive value of p for which ots will be				p=0 w	rill both have real
a)	p≥16 b	b) $p \le 16$	c)	p = 16	d)	None of these
Q.5 : If e	equation $9x^2 + 6px + 4 =$	= 0 has equal roots	, the	n both roots are eq	ual to	
a)	$\pm \frac{2}{3}$ t) <u>+3</u>	c)	$\pm \frac{3}{2}$	d)	0
Q.6 : Th	the equation $(x-2)^2 + 1$	=2x-3 is a				
a)	linear equation		b)	quadratic equation	n	
c)	cubic equation		d)	bi-quadratic equa	tion	
Q.7 : Th	e quadratic equation wh	ose one rational ro	oot is	$3 + \sqrt{2}$ is		
a)	$x^2 - 7x + 5 = 0$		b)	$x^2 + 7x + 6 = 0$		
c)	$x^2 - 7x + 6 = 0$		d)	$x^2 - 6x + 7 = 0$		
Q.8: The equation $2x^2 + kx + 3 = 0$ has two equal roots, then the value of k is						
a)	_			$\pm 3\sqrt{2}$	d)	$\pm 2\sqrt{6}$
Q.9 : Th	e value of $\sqrt{6 + \sqrt{6 + \sqrt{6}}}$	<u></u> is.				

	a) 4 b) 3 c) 3.5 d) -3						
For question number 10 to 11 two statements are given one labeled Assertion and other labeled Reason select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below							
	a) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.						
	 b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion. 						
	c) If Assertion is correct but Reason is incorrect.						
	d) If Assertion is incorrect but Reason is correct.						
Q.10 :	Assertion: If one root of the quadratic equation $6x^2 - x - k = 0$ is 2/3, then the value of k is 2.						
2	Reason: The quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ has almost two roots.						
Q.11 :	Assertion: The roots of the quadratic equation $x^2 + 2x + 2 = 0$ are imaginary.						
	Reason: If discriminant $D = b^2 - 4ac < 0$ then the roots of quadratic equation $ax^2 + bx + c = 0$ are imaginary.						
Section : B (Each 2 Marks)							
Q.12 :	Solve the equation :						
	$\frac{3}{x+2} - \frac{1}{2} = \frac{2}{3x-1}; x \neq -2, x \neq \frac{1}{3} \text{ for } x.$						
Q.13 :	Solve: $x^{2} + \left(\frac{a}{a+b} + \frac{a+b}{a}\right)x + 1 = 0$ OR						
	Solve the quadratic equation for $x: 2x^2 + 6\sqrt{3}x - 60 = 0$.						
	Section : C (Each 3 Marks)						
Q.14 :	Seven years ago Varun's age was five times the square of Swati's age. Three years hence. Swati's age will be two fifth of Varun's age find their present ages.						
Q.15 :	Solve: $9x^2 - 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0.$ OR						
	Find the value of k for which the quadratic equation						
	$(k + 1)x^2 - 6(k + 1)x + 3(k + 9) = 0, k \neq -1$ has equal roots. Hence find the roots of the equation.						
Section - D(Each 5 Marks)							
Q.16 :	Sum of the areas of two squares is 640 m ² . If the difference of their perimeters is 64 m find						
	the sides of the two squares.						
	OR A shopkeeper buys a number of books for ₹ 80 If he had bought 4 more books for the same						
	amount, each book would have cost ₹ 1 less. How many books did he buy?						
	Section : E						
Q.1 7 :	Case Study :						
~~··	Distance and Speed : A passenger is waiting for his flight at an airport. But due to bad						
	weather conditions, his flight got delayed by 40 minutes. In order to reach the destination on time, which is 1600 km away, an aeroplane has to increase its speed by 400 km/h from its usual speed. (Let usual speed be x km/h).						

- i) Find the expression for the time taken by the plane to cover 1600 km with its increased speed.
- ii) Find the usual speed of the plane.

OR

Manoj when increases his speed from 24 km/h to 30 km/h he takes 1 hour less than the usual time to cover a certain distance. What is the distance usually covered by Manoj?

1

2

1

iii) If the usual speed of the plane is 750 km/h, then find the time taken by the plane to cover 2250 km distance.

