Shiksha Classes Bhandara CHAPTER TEST				
Su	bject : Physics Topic : Vec	ctor M.M. : 1	100	
(i) (ii)	Marking Scheme: Each question is allotted 4 (four) marks for each correct response. ¹ / ₄ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.	\vec{P} and \vec{Q} is 18N. The direction of angles to \vec{F} . Find the magnitude of \vec{Q} (A) 4N (B) 5N (C) 2N (D) 7N Q.10 If a vector $2\hat{i}+3\hat{j}+8\hat{k}$ is perpendicula $4\hat{j}-4\hat{i}+\alpha\hat{k}$, then the value of α is –	Q is at right . ar to the vector	
Q.1	A body is rotating with angular velocity $\vec{\omega} = (3\hat{i} - 4\hat{j} + \hat{k})$. The linear velocity of a point having position vector $\vec{r} = (5\hat{i} - 6\hat{j} + 6\hat{k})$ is – $[\vec{v} = \vec{\omega} \times \vec{r}]$ (A) $6\hat{i} + 2\hat{j} - 3\hat{k}$ (B) $18\hat{i} + 13\hat{j} - 2\hat{k}$ (C) $-18\hat{i} - 13\hat{j} + 2\hat{k}$ (D) $6\hat{i} - 2\hat{j} + 8\hat{k}$	(A) $1/2$ (B) $-1/2$ (C) 1 (D) -1 Q.11 If the angle between the vectors \vec{A} a value of the product ($\vec{B} \times \vec{A}$). \vec{A} is equa (A) BA ² sin θ (B) BA ² c (C) BA ² sin θ cos θ (D) zero Q.12 A particle having simultaneous velocit	nd \vec{B} is θ , the al to – $\cos \theta$ ies 3m/s, 5 m/s	
Q.2	If force $\vec{F} = 5\hat{i} + 3\hat{j} + 4\hat{k}$ makes a displacement of $\vec{s} = 6\hat{i} - 5\hat{k}$ work done by the force is – (A) 10 units (B) $122\sqrt{5}$ units (C) $5\sqrt{122}$ (D) 20 units	and 7m/s is at rest. Find the angle be two velocities. (A) 45° (B) 30° (C) 90° (D) 60° Q.13 A set of vectors taken in a given order polygon Than the resultant of these ve	tween the first	
Q.3	The sum of two vectors \vec{A} and \vec{B} is at right angles to their difference. Then – (A) A = B (B) A = 2B (C) B = 2A (D) \vec{A} = $d\vec{D}$ has the set of the set	(A) scalar quantity (B) pseud (C) unit vector (D) null v Q.14 If $0.3\hat{i}+0.4\hat{j}+c\hat{k}$ is a unit vector, valu (A) $\sqrt{0.75}$ (B) $\sqrt{0.23}$ (C) $\sqrt{2}$ (D) 1	o vector ector ector e of c = ?	
Q.4	(D) A and B have the same direction Two vectors are perpendicular, if – (A) $\vec{A}.\vec{B}=1$ (B) $\vec{A}\times\vec{B}=1$ (C) $\vec{A}.\vec{D}=0$ (D) $\vec{A}\vec{D}$ AB	Q.15 The forces, each numerically equal to 5N, are acting as shown in the figure. Find the angle between forces ?		
Q.5	(c) $\hat{A} \cdot \hat{B} = 0$ (d) $\hat{A} \cdot \hat{B} = A\hat{B}$ What is the vector joining the points (3, 1, 14) and (-2, -1, -6) ? (A) $2\hat{i} + \hat{j} + 2\hat{k}$ (B) $5\hat{i} + 2\hat{j} + 20\hat{k}$ (C) $\hat{i} + \hat{j} + 2\hat{k}$ (D) $\hat{i} + 2\hat{j} + 2\hat{k}$	(A) 60° (C) 30° (C) 30° (D) None Q.16 Find the angle between two vectors of	of these magnitude 12	
Q.6	\vec{A} is directed vertically downwards and \vec{B} is directed along the north. What is the direction of $\vec{B} \times \vec{A}$ (A) east	and 18 units when their resultant is 24 u (A) $\cos \theta = 1/4$ (B) $\cos \theta$ (C) $\cos \theta = 1/\sqrt{2}$ (D) $\cos \theta$ 0.17 Two forces have magnitudes in the trati	nits. y = 1/2 $y = \sqrt{3}/2$ o 3 : 5 and the	
Q.7	(C) north (D) north west A body of 3 kg moves in the XY plane under the action of a force given by $6t\hat{i} + 4t\hat{j}$. Assuming that the body is at rest at time t = 0, the velocity of the body at t = 3s is – (A) $6\hat{i} + 6\hat{j}$ (B) $18\hat{i} + 6\hat{j}$	angle between their directions is 60°. If is 35N, find the sum of their magnitudes (A) 50 N (B) 60 N (C) 30 N (D) 40N Q.18 If vectors P, Q and R have magnitude units and $\vec{P} + \vec{Q} = \vec{R}$, find the angle betw	their resultant 5. 5, 12 and 13 ween Q and R.	
	(C) $9\hat{i} + 6\hat{j}$ (D) $12\hat{i} + 18\hat{j}$	\overrightarrow{R} $\overrightarrow{\theta}$		
Q.8	If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$,	$\vec{\varrho}$		
	then find the angle between \vec{a} and \vec{b} .			
	(A) $\pi/3$ (B) $\pi/4$ (C) $2\pi/3$ (D) $2\pi/5$	(A) $\theta = \cos^{-1}\left(\frac{12}{2}\right)$ (B) $\theta = c$	$\cos^{-1}\left(\underline{5}\right)$	
Q.9	A force \vec{F} of magnitude 12N has non-rectangular components \vec{P} and \vec{Q} . The sum of the magnitude of	(C) $\theta = \cos^{-1}\left(\frac{1}{13}\right)$ (D) None	of these	

Q.19 The resultant of two vectors of magnitudes 2A and $\sqrt{2}A$ acting at an angle θ is $\sqrt{10}A$. Find the value of θ .

(A) 90°	(B) 60°
(C) 45°	(D) 30°

- **Q.20** A force $\vec{F} = 6\hat{i} + x\hat{j}$ acting on a particle displaces it from the point A (3, 4) to the point B (1, 1). If the work done is 3 units, then find value of x. (A) 6 (B) -1 (C) 3 (D) -5
- For Q.21-Q.25 :
- The answer to each question is a NUMERICAL VALUE.

Q.21 Two forces of $\vec{F}_1 = 250$ due east and $\vec{F}_2 = 250$ due north have their common initial point is $\vec{F}_2 - \vec{F}_1 = 250\sqrt{X}$ N . Find the value of X.

- **Q.22** One of the rectangular components of a velocity of 60kmh^{-1} is 30kmh^{-1} . Other rectangular component is $X\sqrt{3} \text{ kmh}^{-1}$. Find the value of X.
- **Q.23** A woman walks 250m in the direction 30° east of north, then 175m directly east. Find the magnitude of the displacement.
- **Q.24** If the resultant of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{13}Q$, then find P/Q.
- **Q.25** A vector \vec{a} of magnitude 10 units and another vector \vec{b} of magnitude 6.0 units differ in directions by 60°. Find the magnitude of the vector product $\vec{a} \times \vec{b}$.

