

Sub.: Maths. Std.X (CBSE)

Question Paper 2 : Polynomials.

Total Marks : 30 Time : 1 hour

Q.8 :	If $x^3 + 11$ is divided by $x^2 - 3$, then the possible degree of remainder is							
	a)	0	b) 1	c	2	d)	less than 2	
Q.9 :	The	number of	polynomials	s having zeroes	s as -2 and	5 is.		
	a)	1	b) 2	c	3	d)	more than 3	
	For question number 10 to 11 two statements are given one labeled Assertion and other labeled Beason, select the correct answer to these questions from the corder							
	(a), (b), (c) and (d) as given below							
	a)	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of						
	asser	assertion (A).						
	b) of ass	b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).						
	c) Assertion (A) is true but reason (R) is false.							
	d) Assertion (A) is false but reason (R) is true.							
Q.10 :	Assertion: $x^2+7x+12$ has no real zeroes.							
	Reason: A quadratic polynomial can have at the most two zeroes.							
Q.11 :	Assertion: If one zero of polynomial $p(x) = (k^2+4)x^2+13x+4k$ is reciprocal of the other, then $k = 2$.							
	Reason: If $(x-a)$ is a factor of $p(x)$, then $p(a) = 0$ i.e., a is a zero of $p(x)$.							
Section : B (Each 2 Marks)								
Q.12 :	Find the zeroes of polynomial x^2 -3 and verify the relationship between the zeroes and							
	the coefficients.							
Q.13 :	If α and β are zeroes of the quadratic polynomial $f(x) = x^2 - x - 4$ find the value of							
	$\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$							
$\mathbf{U}\mathbf{K}$								
	the value of k.							
Section : C (Each 3 Marks)								
Q.14 : Compute the zeroes of the polynomial $4x^2 - 4x - 8$. Also, establish a relationship between the zeroes and coefficients.								
Q.15 : α and β are zeroes of the quadratic polynomial $x^2 - 6x + y$. Find the value of 'y' if								
$3\alpha + 2\beta = 20.$								
✓ OR								

Find a quadratic polynomial, the sum and product of whose zeroes are 0 and $\frac{-3}{5}$ respectively. Hence find the zeroes.

Section - D(Each 5 Marks)

Q.16 : If α and β are zeroes of the polynomial $p(x) = 2x^2 - 7x + k$ satisfying the condition

 $\alpha^2 + \beta^2 + \alpha\beta = \frac{67}{4}$, then find value of k for this to be possible.

OR

If α and β are the zeroes of $p(x) = kx^2 - 4x + 4$ such that $\alpha^2 + \beta^2 = 24$, find k.

Section : E

Q.17 : Case Study :

Priya and her husband Aman who is an architect by profession, visited France. They went to see Mont Blanc Tunnel which is a highway tunnel between France and Italy, under the Mont Blanc Mountain in the Alps, and has a parabolic cross-section. The mathematical representation of the tunnel is shown in the graph.

Based on the above information, answer the following questions.

- i) What is the zeroes of the polynomial whose graph is given?
- ii) What will be the expression of the polynomial given in diagram?
- iii) What is the value of the polynomial. represented by the graph, when x = 4?

OR

If one of the zero is 4 and sum of zeroes is -3, then find the representation of tunnel as a polynomial.

1

1

2

* * *

