

BOARD QUESTION PAPER

Subject : Class :	Physics XII	Topic: 15. Structure of Ato	ms and l	Nuclei	Total Marks : 20 Time : 1 Hr.
Section (A)					
Q.1. :	Select and write the most appropriate answer from given alternatives in each				
	sub-question				
i)	The wavelength limit (series Limit) present in the P-fund series is				
	$(R=1.097 \times 10^7 m)$	n ⁻¹			
	a) 1572×10^{-10}	<i>m</i>	b)	$2535 \times 10^{-9} m$	1
	c) $2278 \times 10^{\circ}$	⁻⁹ m	d)	1898 × 10 ⁻⁹ 1	n
ii).	A hydrogen atom initially in the ground level absorbs a photon and is exc level then the wavelength of photon is -				cited to $n=4$
	a) $790A^0$		b)	$1070A^{0}$	
	c) $970A^0$	Ċ	d)	$870A^{0}$	
iii)	A radioactive element x with half life 2 hrs. decays giving a stable element y. After a time t , ratio of x and y atoms is 1:16. Time t is				
	a) 8 hrs.		b)	6 hrs.	
	c) 4 hrs.		d)	16 hrs.	
iv)	In nuclear reaction there is conservation of				
	a) mass only		b) en	ergy only	
	c) momentum only d) mass energy and mom				momentum
V)	The radius of nucleus of mass number 3 is R. Then the radius of nucleus of mass number 8				
	a) 3 R		b)	9 R	
	c) $(27)_{\rm R}^{\frac{1}{2}}$	/	d)	27 R	
Q.2 :	Very short answ	er type Question			2
i) Define ionization energy.					
ii) Define decay constant.					
5	7				

: Attempt any three.

- Q.3 : Write short notes on Thomson's model.
- Q.4 : State limitations of Bohr's model.
- Q..5: An electron make a transition from orbit n=4 to the orbit n=2 of a hydrogen atom. What is the wave number of emitted radiation ?

Section (B)

6

3

4

Q.6 : Calculate the De Broglies wavelength of a proton if it is moving with the speed of $2 \times 10^5 m/s$ $(m_p = 1.673 \times 10^{-27} kg)$

Section (C)

: Attempt any one.

Q.7 : State the postulates of Bohr's theory of hydrogen atom. Write the necessary equations.

Q.8 : A hydrogen atom undergoes a transition from a state with n = 4 to a state with n = 1 calculate i) The change in the angular momentum of the electron ii) The wavelength of the electron iii) The wavelength of the entitled radiation.

 $(h=6.63 \times 10^{-34} \text{ Js}, \text{ R}=1.097 \times 10^7 \text{ m}^{-1})$

Section (D)

: Attempt any one.

Q.9 : i) State the law of radioactive decay. Hence derive the relation $N = N_0 e^{-\lambda t}$ where the symbols have their usual meanings.

ii) Show graphically how the number of nuclei (N) of radioactive element varies with time (t). Protactinium ${}^{233}_{91}Pa$ decays to $\left(\frac{1}{5}\right)^{th}$ of it's initial quantity in 62.7 days. Calculate the decay constant, mean life and halflife.

Q.1.0 : i) Derive an expression for the radius of the nth Bohr orbit in a hydrogen atom. Hence, show that the radius of the orbit is directly proportional to the square of the principle quantum number. What is series limit ?

ii) The short wavelength limit of the Lyman series is 911.3 A⁰. Calculate the short wavelength limit of the Balmer series.

* * *

