SHIKSHA CLASSES

Subject : Maths - II	Question Paper	Total Marks :20
Class : XI	6: Functions	Time : 1 Hour
SECTION - A Q.1 : Choose the correct option i) Let the function f be defined $=\frac{2x+1}{1-3x} \text{ then } f^{-1}(x) \text{ is:}$ a) $\frac{x-1}{3x+2}$ b) $\frac{x}{3x}$ $\frac{2x+1}{1-3x}$ d) $\frac{3x}{x}$ ii) If $\log(5x-9) - \log(x+3)$ $= \dots$ a) 3 b) 5 d) 7	$\begin{array}{c cccc} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	bc, $y = \log b$ ca, $z = \log c$ ab, then $\frac{1}{y} + \frac{1}{1+z}$ f and g are inverse functions of where; $\frac{3}{2}, g(x) = \frac{2x+3}{x-1}$ t a) - $\frac{1}{y} + 5\log\left(\frac{2}{5}\right) + \log\left(\frac{32}{25}\right) = \log 3$
Q.2 : Solve the following question 2 i) If $f(x) = x^2 + 2$ and $g(x) = 5$ find $(f+g)(1)$ ii) Write log72 in terms of log2 <u>SECTION B</u>	b) If $f: A \rightarrow H$ then gof is 5x - 8, then 2 and log3 Q.9 : Solve for x	B and g : B → C are one - one, also one - one ECTION D owing : (ANY 1) 4 :
Solve the following : (ANY 2 Q.3 : Find x, if $f(x) = g(x)$ where i) $f(x) = x^4 + 2x^2$, $g(x) = 14$ ii) $f(x) = \sqrt{x} - 3$, $g(x) = 14$ Q.4 : Find the domain and range of functions : $f(x) = \sqrt{(x-2)}$ Q.5 : If $f(x) = ax^2 - bx + 6$ and for = 30, find a and b. <u>Section C</u> Solve the following : (ANY 2)	2) 4 i) $2 \log_{10} x =$ ii) $x + \log_{10} (1 + \log_{10} x)$ ii) $x + \log_{10} (1 + \log_{10} x)$ (1) $x + \log_{10} (1 + \log_{10} x)$ (2) $x + \log_{10} x =$ ii) $x + \log_{10} (1 + \log_{10} x)$ (1) $x + \log_{10} (1 + \log_{10} x)$ (2) $x + \log_{10} x =$ (3) $x + \log_{10} x =$ (4) $x + \log_{10} (1 + \log_{10} x)$ (5) $x + \log_{10} (1 + \log_{10} x)$ (1) $x + \log_{10} (1 + \log_{10} x)$ (2) $x + \log_{10} x =$ (3) $x + \log_{10} (1 + \log_{10} x)$ (4) $x + \log_{10} (1 + \log_{10} x)$ (5) $x + \log_{10} (1 + \log_{10} x)$ (6) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (7) $x + \log_{10} (1 + \log_{10} x)$ (8) $x + \log_{10} (1 + \log_{10} x)$ (9) $x + \log_{10} (1 + \log_{10} x)$ (1) $x + \log_{10} (1 + \log_{10} x)$ (2) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (3) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (4) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (5) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (6) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (7) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (8) $x + \log_{10} x = \sqrt{1 + \log_{10} x}$ (9) $x + \log_{10} x = 1 + \log_{10$	$1 + \log_{10} \left(x + \frac{11}{10} \right)$ $+ 2^{x} = x \log_{10} 5 + \log_{10} 6$ main of the following functions. $\overline{\sqrt{1 - \sqrt{1 - x^{2}}}}$ $\overline{\log(x^{2} - 6x + 6)}$ $* * *$

