

# SHIKSHA CLASSES

# **BOARD QUESTION PAPER**

| Subject : PhysicsTopic: 14. Dual Nature of Radiation and MatterTotal Marks : 20Class : XIITime : 1 Hr.                                                                                                                         |                                                                                                                                               |                          |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|
| Section (A)                                                                                                                                                                                                                    |                                                                                                                                               |                          |                        |
| Q. 1. :                                                                                                                                                                                                                        | Select and write the most appropriate answer from given alternatives in each                                                                  |                          |                        |
|                                                                                                                                                                                                                                | sub-question.                                                                                                                                 |                          | 5                      |
| i)                                                                                                                                                                                                                             | In Einstein's photoelectric equation, $E_{\rm K} =$                                                                                           | $hv - \phi, E_K$ denotes |                        |
|                                                                                                                                                                                                                                | a) Minimum KE of emmited electron                                                                                                             | b) Maximum KE of em      | mited electron         |
|                                                                                                                                                                                                                                | c) Average KE of emmited electron                                                                                                             | d) KE of all the emmite  | ed electron            |
| ii).                                                                                                                                                                                                                           | The K.E. of most energtic photoelectron is $8 \times 10^{-19}$ J. The stopping potential will be-                                             |                          |                        |
|                                                                                                                                                                                                                                | a) 2 Volt b) 4 Volt                                                                                                                           | c) 5 Volt                | d) 8 Volt              |
| iii)                                                                                                                                                                                                                           | Photo electric effect is the emission of                                                                                                      |                          |                        |
|                                                                                                                                                                                                                                | a) Protons b) Electrons                                                                                                                       | c) Photons               | d) Positrons           |
| iv)                                                                                                                                                                                                                            | If the photoelectric work function for a metallic surface is 4.125 eV, the cut-off wavelength for photoelectric phenomenon for the surface is |                          |                        |
|                                                                                                                                                                                                                                | a) 4500 A <sup>0</sup> b) 1700 A <sup>0</sup>                                                                                                 | c) $2800  A^0$           | d) 3000 A <sup>0</sup> |
| v)                                                                                                                                                                                                                             | What happens to the magnetic moment if a hole is made at the centre of a bar magnet?                                                          |                          |                        |
|                                                                                                                                                                                                                                | a) Decreases                                                                                                                                  | b) Increases             |                        |
|                                                                                                                                                                                                                                | c) Not a change                                                                                                                               | d) None of the above     |                        |
| Q. 2. :                                                                                                                                                                                                                        | Very short answer type Question 2                                                                                                             |                          |                        |
| i)                                                                                                                                                                                                                             | What is photoelectric effect?                                                                                                                 |                          |                        |
| ii)                                                                                                                                                                                                                            | Calculate the frequency associated with a photon of energy $3.3 \times 10^{-20}$ J.                                                           |                          |                        |
|                                                                                                                                                                                                                                | Section (B)                                                                                                                                   |                          |                        |
| :                                                                                                                                                                                                                              | Attempt any three question. 6                                                                                                                 |                          |                        |
| Q. 3. :                                                                                                                                                                                                                        | Define - a) Threshold frequency b) Stopping potential                                                                                         |                          |                        |
| <b>Q. 4. :</b> .                                                                                                                                                                                                               | Calculate the energy of a photon in eV and in joule in a light of wavelength $5000  A^0$ .                                                    |                          |                        |
| <b>Q. 5. :</b> Sheet of silver is illuminated by monochromatic ultraviolet light of wavelength 1810A <sup>0</sup> . What is the maximum energy of the emitted electron? Threshold wavelength of silver is 2640A <sup>0</sup> . |                                                                                                                                               |                          |                        |
| Q. 6. : Explain the term wave particle duality?                                                                                                                                                                                |                                                                                                                                               |                          |                        |

## : Attempt any one question.

- **Q. 7. :** Derive de-Broglie wave equation for a particle of mass (m) moving with velocity V.
- **Q. 8. :.** The photoelectric workfunction of metal is 4.2 eV. If the stopping potential is 3V. Find the threshold wavelength and the maximum kinetic energy of emitted electrons.

Section (C)

#### Section (D)

### : Attempt any one question.

- Q. 9.: i) Explain the effect of potential and frequency of light on photoelectric current..
  - ii). Determine planck's from a certain metal surface by the light of frequency  $2.2 \times 10^{15}$  Hz are fully retarded by a reverse potential of 6.6V and those emmitted by light of frequency  $4.6 \times 10^{15}$  Hz are stopped by a reverse potential of 16.5V.
- Q. 10.: i) Draw schematic diagram of experimental set up for photoelectric effect. Describe the construction of photoelectric Hertz tube.

iii) Find the maximum kinetic energy of electrons ejected from a certain material, if the materials workfunction is 2.7 eV and the frequency of the incident radiation is  $3.2 \times 10^{15} \text{ Hz}$ .

\* \* \*

3

4

