

BOARD QUESTION PAPER

Subject : Maths-II Topic: 6. Differential Equations				Total Marks : 20	
Class	: X	Π			Time : 1 Hr.
Section A					
Q.1 :	: Choo	ose the co	rrect option :		4
i)	Thes	olution of	cosx.cosy dy-sinx.siny	dx = 0 is	
	a) si	$ny \cos x =$	c C	b) $\cos x \cos y = c$ d) $\tan x \tan y = c$	
ii) The d	ifferentia	equation obtained on elir	ninating A and B from $y = A contained and B$	$\cos \omega t + B \sin \omega t$ is
	a) y"	+ y' = 0	b) $y'' = -\omega^2 y$	c) $y'' - \omega^2 y = 0$	d) $y'' + y = 0$
Q.2 :	:`Solve t	he follow	ing questions:		2
i) Determine the order and degree of he following differential equations:					
	$\frac{\mathrm{d}y}{\mathrm{d}x^2}$	$+X(\frac{\mathrm{d}y}{\mathrm{d}x})$	$-y = 2 \sin x$	S	
ii) Obtain the differntial equation by eliminating the arbitrary constants from the following					
	y²=4a	X	Ċ	2	
Section B					
:	: Solve	e the follo	wing : (ANY2)		4
Q.3 : Verify that $y = \log x + c$ is a solution of $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$					
Q.4 :	Solve t	he differe	ntial equation: $\frac{dy}{dx} = \frac{1+y}{1+z}$	$\frac{v^2}{r^2}$.	
Q.5 : Obtain the differential equation by eliminating the arbitrary constants $y = A\cos(\log x) + B\sin(\log x)$					
			Sec	tion C	
:	` Ansv	ver the fo	llowing : (ANY 2)		6
Q.6 :	Sol	we $\frac{dy}{dx} =$	$(9x + y + 2)^2$		

Q.7 : Form the differential equation by eliminating arbitrary constant. $y = c_1 e^{3x} + c_2 e^{-3x}$

Q.8 : Find the particular solution
$$\frac{dy}{dx} = 3^{x+y}$$
 when $x = 0, y = 0$

Section D

: Answer the following : (ANY 1)

Q.9 : Solve
$$\frac{y}{x} \cos\left(\frac{y}{x}\right) \left(\frac{dy}{dx} - \frac{y}{x}\right) + \sin\left(\frac{y}{x}\right) \left(\frac{dy}{dx} + \frac{y}{x}\right) = 0$$
 when x = 1 and $y = \frac{\pi}{2}$

Q.10: The rate of growth of the population of a city at any time t is proportional to the size of the population. For a certain city it is found that the constant of proportionality is 0.04. Find the population of the city after 25 years if the initial population is 10,000. [Take e = 2.7182]

* * *

4

