SHIKSHA CLASSES

Subject : Maths - II

Question Paper

Total Marks :20

Class : XI

4 : Method of Induction and Binomial Theorem

4

6

Time : 1 Hour

4

SECTION - A

- Q.1 :Choose the correct option :
 - i) The coefficient of the 8th term in the expansion of $(1+x)^{10}$ is :
 - a) 7 b) 120 c) ${}^{10}C_8$ d) 210
 - ii) The value ${}^{11}C_2 + {}^{11}C_4 + {}^{11}C_6 + {}^{11}C_8$ is equal to a) $2^{10}-1$ b) $2^{10}-11$ c) $2^{10}+12$ d) $2^{10}-12$
- O.2 : Solve the following questions:
 - 2
 - i) Show that $C_0 + C_1 + C_2 + \dots + C_{10} = 1024$
 - ii) The coefficient of the 8th term in the expansion of $(1+x)^{10}$ is :
 - **SECTION B**

Solve the following : (ANY 2)

Q.3 : Expand : $(\sqrt{5} - \sqrt{2})^5$ Q.4 : Find the value of $(0.9)^6$

- Q.4 : Find the value of (0.9)⁶, correct upto four places of decimals.
- Q.5 : Find the constant term (term independent

of x) in the expansion of: $\left(\sqrt{x} - \frac{3}{x^2}\right)^{10}$

SECTION C

Solve the following : (ANY 2)

Q.6 : Use binomial theorem to evaluate the following upto four places of decimals : $\sqrt[3]{126}$

Q.7 : Show that
$$C_0 + C_2 + C_4 + C_6 + C_8 = C_1 + C_3 + C_5 + C_7 = 128$$

Q.8 : Prove by method of induction, for all $n \in N \ 1^2 + 3^2 + 5^2 + \dots + (2n-1) = \frac{n}{3}$ (2n-1)(2n+1).

SECTION D

- Solve the following : (ANY 1)
- Q.9 : Prove by method of induction, for all
 - $n \in N (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$
- Q.10 : Prove that :

$$(\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6 = 970.$$

