

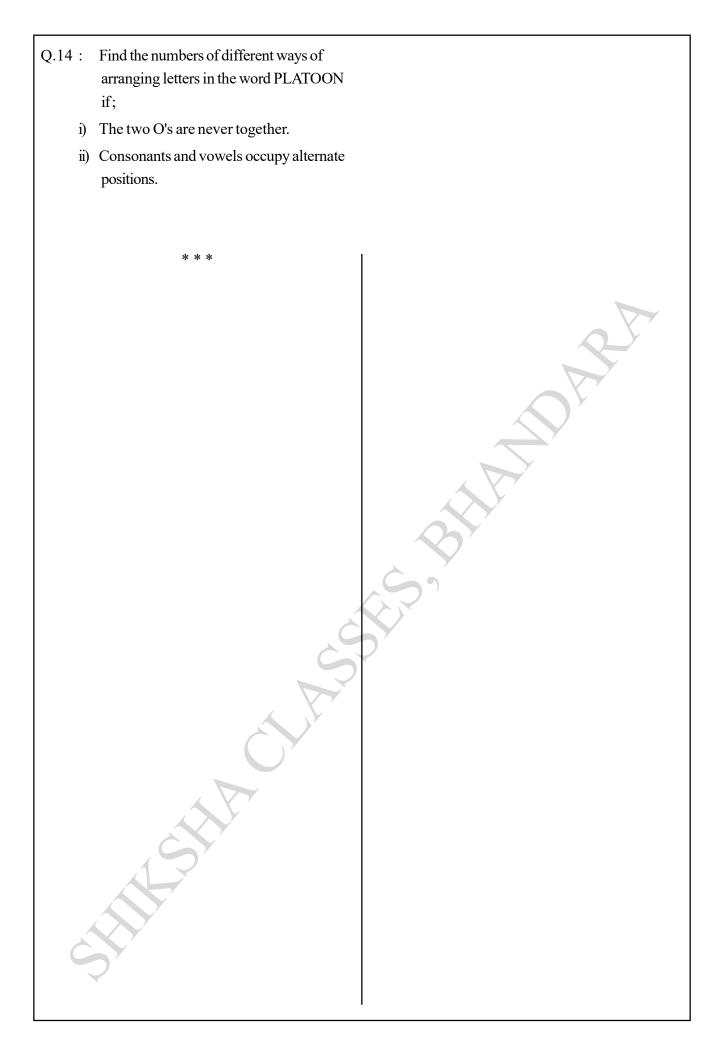
Subject : Maths - II

Question Paper

Total Marks :25 Time : 1 Hour

Class		: XI 3: Permutations	and Combinations		
		SECTION - A			(2n)!
Q.1	:	Choose the correct option : 4			7!(2n -
	i)	There are 10 persons among whom two are brothers. The total number of ways in			
		which	Q.5	:	Simplify:
		these persons can be seated around a round table so that exactly one person sits between	Q.6	:	How mar using lett
		the brothers, is equal to:		i)	letters car
		a) 2!×7! b) 2!×8! c)		ii)	letters car
		3!×7! d) 3!×8!	Q.7	:	Find n if
	ii)	Find the number of triangles which can be			
		formed by joining the angular points of a		So	olve the fol
		polygon of 8 sides as vertices.	Q.8	•	How man
		a) 16 b) 56 c)	(\mathbf{k})		1000 hav
		24 d) 8	Q.9	:	Find m ai
Q.2	: \$	olve the following questions:			12
	i)	Find n, if ${}^{n}C_{8} = {}^{n}C_{6}$	Q.10	:	Find n an : 42
	ii)	In how many different arrangements can 6	Q.11	:	Find the c
		gentlemen and 6 ladies sit around a table			values in t
		if 💦 💦		i)	¹⁴ Cr and
		there is no restriction.		ii)	¹³ Cr and ³
		SECTION B		iii)	¹⁵ Cr and
	Sc	olve the following : (ANY 3) 6	Q.12	:	$\mathrm{If}^{\mathrm{n}}\mathrm{P}_{\mathrm{r}}=18$
Q.3	:	How many four digit numbers will not			$^{n+4}C_{r+3}.$
		exceed 7432 if they are formed using the			<u> </u>
(Ċ	digits 2, 3, 4, 7 without repetition?			nswer the
Q.4	:	Find n, if:	Q.13	:	$\mathrm{If}{}^{\mathrm{n}}\mathrm{C}_{\mathrm{r-1}} =$

$$\frac{(2n)!}{7!(2n-7)!}:\frac{n!}{4!(n-4)!} = 24:1$$
Q.5 : Simplify: $\frac{n^2 - 9}{(n+3)!} + \frac{6}{(n+2)!} - \frac{1}{(n+1)!}$
Q.6 : How many 4 letter words can be formed using letters in the word MADHURI, if
i) letters can be repeated
ii) letters cannot be repeated
Q.7 : Find n if; ²ⁿC₃: ⁿC₂ = 52:3
SECTION C Solve the following : (ANY 3)
9
Q.8 : How many numbers between 100 and 1000 have the digit 7 exactly once?
Q.9 : Find m and n, if ^(m+n)P₂ = 56 and ^(m-n)P₂ = 12
Q.10 : Find n and r if, ⁿC_{r-1}: ⁿC_r: ⁿC_{r+1} = 20:35 :42
Q.11 : Find the difference between the greatest values in the following.
i) ¹⁴Cr and ¹²Cr
ii) ¹³Cr and ⁸Cr
iii) ¹⁵Cr and ¹¹Cr


Q.12 : If
$${}^{n}P_{r} = 1814400$$
 and ${}^{n}C_{r} = 45$, find
 ${}^{n+4}C_{r+3}$.

SECTION D

Answer the following : (ANY 1) : If ${}^{n}C_{r-1} = 6435$, ${}^{n}C_{r} = 5005$; ${}^{n}C_{r+1} =$

3003, find $^{r}C_{r+3}$.

4

