Shiksha Classes, Bhandara Biology

Principles Of Inheritance And Variation

(1.)	Genetics is the subject that deals with	lang	ce A							
(a.)	inheritance	(b).)	variation of characteristics						
(c.)	reproduction	(d	l.)	both (a) and (b)						
(2.)	The basis of heredity is									
(a.)	variation	(b).)	inheritance						
(c.)	mutation	(d	l.)	linkage						
(3.)	Humans knew from as early as 8000–10 hidden in	-1000 BC that one of the causes of variation was								
(a.)	sexual reproduction	(b).)	asexual reproduction						
(c.)	vegetative propagation	(d	l.)	none of these						
(4.)										
(a.)	Humans knew from very early that sexual reproduction is one of the causes of variation.).)	They exploited the variation to obtain plants and animals of desirable characters through selective breeding.						
(c.)	Sahiwal cows were obtained through artificial selection and domestication from ancestral wild cows.	(d	l.)	Our ancestors were very well aware about the scientific basis of inheritance of characters and variation.						
(5.)	Which one from the following is the period	od fø	or M	Iendel's hybridization experiments?						
(a.)	1840–1850	(b).)	1857–1869						
(c.)	1870–1877	(d	l.)	1856–1863						
(6.)	Who proposed the 'Laws of Inheritance'	in li	ving	g organisms?						
(a.)	Mendel	(b).)	Morgan						
(c.)	de Vries	(d	l.)	Correns						
(7.)	Match Column-I with Column-II and cl below.	hoos	se th	ne correct answer from the codes given						
Colum	ı-I	Column-II								
(A) Ger	netics	(1) Process of passing characters from parent to offspring								
(B) Inh	eritance	(2) Laws of inheritance								
(C) Var	riation	(3) A branch of Biology								
(D) Me	ndel	(4) Degree of difference of progeny from their parents								
Codes	A B C D			A B C D						

(a.)		1	4	2	3	(b.)	4	2	3	1			
(c.)		3	1	4	2	(d.)	2	3	1	4			
(8.) (a.)		lel inves ed traits	-	charact	ers in the g	garden pea plant that were manifested as two (b.) opposing traits							
(c.)	simi	lar trait	S			(d.)	none of these						
(9.)	How many pairs of contrasting characters in pea plants were studied by Mendel in h experiments?												
(a.)	Six					(b.)	Eigh	nt					
(c.)	Seve	en				(d.)	Fou	r					
(10.)) Which contrasting trait was not studied by Mendel during his experiments?												
(a.)	Seed	d colour				(b.)	Leaf	colour	-				
(c.)	Flow	ver colo	our			(d.)	Sten	n height	-				
(11.)	Among the following, which one is not a dominating trait?												
(11) (a.)		0	on of fl			(b.)	Green colour of pod						
(c.)		-	ur of flo			(d.)	Green colour of seed						
(12)	A ten	a broad	ina lina	ia ono ti	bot								
(12.) (a.)			-	is one the inuous s		(b.)	shor	ve etabl	e trait i	nharitanca			
(a.)		nation		.muous a	sen-	(0.)	shows stable trait inheritance						
(c.)		ws expro rations	essions	of trait f	for several	(d.)	all of these						
(13.)	Matc	h Colui	nn-I wi	th Colu	mn-II and	choose t	he cor	rect op	tion fro	om the codes given			
C 1	below	ν.				C 1	п	-		-			
Column						Column-II							
(A) Axi	al flow	ver				(1) Undergone continuous selfpollination							
(B) Ter	minal f	lower				(2) Father of genetics							
(C) Me	(C) Mendel						(3) Dominant trait						
(D) True-breeding line						(4) Rece	essive t	rait					
Codes	А	В	С	D			А	В	С	D			
(a.)	3	4	2	1		(b.)	4	3	1	2			
(c.)	1	2	4	3		(d.)	2	1	3	4			

(14.) Refer to the given figures (A–D) showing traits of pea plant studied by Mendel. Among these, choose the dominant trait.

	(J) Violet	THE REAL		
			St.	
	A B	С	D	
(a.)	В		(b.)	Α
(c.)	D		(d.)	C
(15.)	Which technique was u	used by Mendel du	uring his	experiments on pea plant?
(a.)	Artificial pollination		(b.)	Cross pollination
(c.)	Self-pollination		(d.)	All of these
(16.)	Choose the correct state	ement(s) from the	e followii	ng.
	(I) During Mendel's	investigation, sta		analysis and mathematical logic were
	applied to problems in (II) Mendel investigate		he garde	n pea plant that were manifested as two
	opposing traits.		-	
	(III) Mendel conducted lines.	d artificial pollina	tion exp	eriments using several true-breeding pea
	(IV) Mendel selected e	ight true-breeding	g pea pla	nt varieties as pairs.
(a.)	I and II		(b.)	III and IV
(c.)	I, II and III		(d.)	All of these
(17.)	The contrasting trait(s)	selected by Mend	del was/	were
(a.)	smooth or wrinkled se	eed	(b.)	yellow or green seed
(c.)	smooth or inflated poo	ds	(d.)	all of these
(18.)	Assertion: Mendel con Reason: He proposed l	-	-	eriments on garden pea plant. ng organisms.
(a.)	Both assertion and rear reason is the correct ex assertion.		(b.)	Both assertion and reason are true but reason is not correct explanation of assertion.
(c.)	Assertion is true, but a	reason is false.	(d.)	Both assertion and reason are false.
(19.)	Assertion: Mendel use	d contrasting trait	ts for his	studies
	Reason: He used Ocim	num plant for his o	experime	ents.
(a.)	Both assertion and rear reason is the correct ex assertion.		(b.)	Both assertion and reason are true but reason is not correct explanation of assertion.
(c.)	Assertion is true, but 1	reason is false.	(d.)	Both assertion and reason are false.
(20.)	Assertion: Mendel use Reason: A true-breeding			ergone continuous self-pollination.
(a.)	Both assertion and reareason is the correct exassertion.		(b.)	Both assertion and reason are true but reason is not correct explanation of assertion.

(c.)	Assertion is true, but reason is false.	(d.)	Both assertion and reason are false
(21.)	The first hybrid generation of Mendel's	experime	ent is known as
(a.)	Filial1 progeny	(b.)	F ₁ -generation
(c.)	Father generation	(d.)	Both (a) and (b)
(22.)	When Mendel crossed true-breeding tall were obtained. On self-crossing in the F_2		arf plants, in F_1 -generation all tall plants ion, he obtained
(a.)	1/4th dwarf and 3/4th tall plants	(b.)	3/4th dwarf and 1/4th tall plants
(c.)	2/4th dwarf and 2/4th tall plants	(d.)	All dwarf plants
(23.)	During the study of inheritance of one ch	aracter	in F ₂ generation, Mendel obtained
(a.)	2 : 1 ratio	(b.)	3 : 1 ratio
(c.)	1 : 2 : 1 ratio	(d.)	1 : 1 : 1 : 1 ratio
(24.)	The 'factors' of Mendel are today knowr	1 as	
(a.)	genome	(b.)	gene
(c.)	DNA	(d.)	allele
(25.)	The slightly different forms of the same	-	
(a.)	genome	(b.)	DNA
(c.)	allele	(d.)	cistron
(26.)	Alleles are		
(a.)	true-breeding homozygotes	(b.)	different molecular forms of a gene
(c.)	heterogyzotes	(d.)	different phenotype
(27.)	What would be the phenotype of a plant trait while 't' represents dwarf trait.	that had	a genotype 'Tt'? Here 'T' represent tall
(a.)	Tall	(b.)	Intermediate height
(c.)	Dwarf	(d.)	None of these
(28.)	In homozygous condition, a particular ge	ene has	
(a.)	different alleles on homologous chromosomes.	(b.)	no alleles on homologous chromosomes.
(c.)	11 1 1 1	(d.)	none of these
	same alleles on homologous chromosomes.	(u.)	
(29.)	-		
(29.) (a.)	chromosomes.		

(c.) both are equally dominant (d.) both are recessive

(30.)	Match Column-I with given below.		Colı	ımn-II	II and choose the correct option from					ne codes	
Colum	Column-I					Column-II					
(A) Genes						(1) Sligh	ntly dif	ferent for	ms of t	the same gen	e
(B) Alleles						(2) Gene	etic coi	nposition	ofan	organism	
(C) Ger	notype					(3) Phys	ical ap	pearance	of an o	organism	
(D) Phe	enotype					(4) Unit	of inhe	eritance			
	Codes	С	D								
(a.)	4 1	2	В 3			(b.)	1	4	3	2	
(c.)	3 2	4	1			(d.)	2	3	1	4	
(31.)	A cross that	is perfo	rmed fo	or the s	study o	f a single	e chara	acter is			
(a.)	dihybrid cro				2	(b.)		cross			
(c.)	monohybric	d cross				(d.)	back	cross			
 (32.) The given figure is the diagrammatic representation of a monohybrid cross. In the figure some plants are mentioned as A and B. What will be the genotype of these plants Parental Tall F₁ generation F₂ generation Dwarf (A) Dwarf Selfing Tall Tall Tall Tall Tall (B) 							0				
(a.)	A-tt, B-d						A - Tt, B - tt				
(c.)	A – TT, B -	– TT				(d.)	A –	Tt, B – 7	Γt		
(33.)	Choose the i	ncorrec	t staten	nent ab	out M	endel's n	nonoh	ybrid cro	oss.		
(a.)) The recessive parental trait is expressed (b.) without any blending in F ₂ generation.						from		ner and	ntal pair seg 1 both allele nete.	-
(c.)	The segregation process.	ation of	alleles	is a ra	ndom	(d.)	There is a 50% chance of a gamete containing either allele.				
(34.)	The productic can be under	-		•	e paren	ts the for	rmatio	n of zyg	otes, t	he F_1 and F	⁵ ₂ plants,
(a.)	Wenn diagr	am				(b.)	Pie diagram				
(c.)	A pyramid	diagran	1			(d.)	Pun	nett squa	ire		
(35.)	Select the co	rrect sta	atemen	t.							
(a.)	Franklin Sta 'linkage'.	ahl coin	ed the	term		(b.)		nett squa sh scient		s developed	by a
(c.)	Spliceosom		-			(d.)	Altm	an.		discovered b	-
(36.)	In the text cr	-	anism	whose	genoty	-				ssed with th	ne
(a.)	recessive pa					(b.)		inant pa			
(c.)	both parent	s one by	y one			(d.)	(d.) none of these				

(37.)	On crossing two tall plants, in F_1 -generation few dwarf offspring were obtained. What would be the genotype of the both the parent?									
(a.)	TT and Tt	(b.)	Tt and Tt							
(c.)	TT and TT	(d.)	TT and tt							
(38.)	Based on his observations of monoh inheritance?	ybrid ci	ross, Mendel proposed which law of							
(a.)	Law of dominance	(b.)	Law of segregation							
(c.)	Law of independent assortment	(d.)	Both (a) and (b)							
(39.)	According to Mendel, characters are con	trolled b	y discrete units called							
(a.)	genes	(b.)	factors							
(c.)	alleles	(d.)	allelomorph							
(40.)	Choose the incorrect statement about law	v of dom	inance.							
(a.)	It is used to explain the expression of only one of the parental characters in a monohybrid cross in F_1 -generation.	(b.)	It does not explain the expression of both parental characters in F_{2} -generation.							
(c.)	It also explains the proportion of $3:1$ obtained in F ₂ -generation.	(d.)	It states that characters are controlled by discrete units called factors.							
(41.)		and cho	oose the correct option from the codes							
Colum	given below. n-I	Column-	П							
(A) Fir	st law of inheritance	(1) Law	of segregation							
(B) Sec		(2) 3:1								
. ,			of dominance							
	-	(4) 1:1								
(2) 10		(1) 1 1 1								
Codes	A B C D									
(a.)	3 1 2 4	(b.)	1 3 4 2							
(c.)	2 3 1 4	(d.)	4 2 3 1							
(42.)	The second law of inheritance, i.e., law of	of segreg	ation is based on the fact that							
(a.)	alleles do not show any blending.	(b.)	(b.) both characters are recovered as such in F_2 generation.							
(c.)	one allele dominates the other allele.	(d.)	Both (a) and (b)							
(43.)	The factor controlling any character is a basis of	discrete	and inpendent. It was concluded on the							
(a.)	results of F ₃ -generation of a cross.	(b.)	observations of a cross made between the plants having two contrasting traits							

where offspring shows only one trait without any blending.

- (c.) self-pollination of F_1 -offspring. (d.) cross pollination of parental generations.
- (44.) In Antirrhinum (Snapdragon), a red flower was crossed with a white flower and in F_1 generation, pink flowers were obtained. When pink flowers were selfed, the F_2 generation showed white, red and pink flowers. Choose the incorrect statement from the following.
 - (a.) The experiment does not follow the principle of dominance. (b.) Pink colour in F_1 is due to incomplete dominance.
 - (c.) Ratio of F_2 is ¹/₄ (Red): 2/4 (Pink) : ¹/₄ (d.) Law of segregation does not apply in this experiment.
- (45.) It was being observed that sometimes, the F₁ shows a phenotype that does not resemble either of the two parents and remains in between the two. It can be explained by
 - (a.) Law of dominance (b.) Law of segregation
 - (c.) Law of incomplete dominance (d.) None of these

(46.) The genotypic ratio obtained in incomplete dominance is

(a.)	3:1	(b.)	1:1:2
(c.)	2:1:1	(d.)	1:2:1

(47.) In case of co-dominance, the F_1 progeny

- (a.) resembles either of the two parents (b.) is in between of parents
- (c.) resembles both the parents (d.) none of these
- (48.) A person of AB blood group has I^A and I^B genes. It is an example of
- (a.) pleiotropy (b.) segregation
- (c.) co-dominance (d.) None of these
- (49.) In a marriage between male with blood group A and female with blood group B, the progeny had either blood group AB or B. What could be the possible genotype of parents?
 - (a.) $I^{A}i$ (Male); $I^{B}i$ (Female) (b.) $I^{A}i$ (Male); $I^{B}I^{B}$ (Female)
 - (c.) $I^{A}I^{A}$ (Male); $I^{B}I^{B}$ (Female) (d.) $I^{A}I^{A}$ (Male); $I^{B}i$ (Female)
- (50.) A person has 'O' blood group. His mother has 'A' while father has 'B' blood group. What would be the genotype of mother and father?
 - (a.) Mother is homozygous for 'A' blood group and father is heterozygous for 'B' blood group.
 - (c.) Both mother and father are homozygous for 'A' and 'B' blood groups respectively.
- (b.) Mother is heterozygous for 'A' blood group and father is homozygous for 'B' blood group.
- (d.) Both mother and father are heterozygous for 'A' and 'B' blood groups respectively.

ANSWER

(1.)	d	(2.)	b	(3.)	a	(4.)	d	(5.)	d
(6.)	а	(7.)	c	(8.)	b	(9.)	c	(10.)	b
(11.)	d	(12.)	d	(13.)	а	(14.)	a	(15.)	d
(16.)	c	(17.)	d	(18.)	b	(19.)	с	(20.)	b
(21.)	d	(22.)	a	(23.)	b	(24.)	b	(25.)	с
(26.)	b	(27.)	a	(28.)	c	(29.)	b	(30.)	a
(31.)	c	(32.)	a	(33.)	b	(34.)	d	(35.)	b
(36.)	a	(37.)	b	(38.)	d	(39.)	b	(40.)	b
(41.)	a	(42.)	d	(43.)	b	(44.)	d	(45.)	с
(46.)	d	(47.)	с	(48.)	с	(49.)	b	(50.)	d

EXPLANATION

(1.) (d.) Genetics is a branch of biology. It deals with inheritance as well as variation of characteristics from parents to offspring. These two processes, i.e., inheritance and variation are the basis of heredity and degree of variation among progeny, respectively.

(2.) (b.) The basis of heredity is inheritance. It is the process by which characters are passed from parent to progeny. It is studied in a branch of biology called Genetics.

(3.) (a.) Humans knew from as early as 8000—1000 BC that one of the causes of variation was hidden in sexual reproduction. Variation is the degree by which progeny differ from their parents as well as from each other.

(4.) (d.) Our ancestors knew about the inheritance of characters and variation. However, they had very little knowledge about the scientific basis of these phenomena. They used their knowledge in obtaining plants and animals of desirable characters. They did it by selective breeding.

(5.) (d.) Mendel performed his hybridization experiments during 1856–1863. He conducted his experiments on garden pea plant. On the basis of his studies, he proposed the laws of inheritance in living organisms.

(6.) (a.) Gregor Mendel proposed the 'Laws of inheritance in living organisms'. He gave these laws on the basis of his experiments on garden pea plant. He is known as the father of genetics.

(7.) (c.) Genetics - A branch of Biology, Inheritance - Process of passing characters from parent to offspring, Variation - Degree of difference of progeny from their parents, Mendel - Laws of inheritance.

(8.) (b.) Mendel investigated characters in the garden pea plant that were manifested as two opposing traits, e.g., tall or dwarf plants, yellow or green seeds. He performed his experiments on garden pea plant to propose laws of inheritance.

(9.) (c.) Seven pairs of contrasting characters in pea plants were studied by Mendel in his experiments. These characters were seed shape, seed colour, flower colour, pod shape, pod colour, flower position and stem height. He proposed laws of inheritance on the basis of his experiments.

(10.) (b.) The 'leaf colour' trait was not studied by Mendel during his experiments. He conducted hybridization experiments on garden peas for seven years. On the basis of his experiments he proposed laws of inheritance in living organisms.

(11.) (d.) Green colour of seed is a recessive trait, while yellow colour of seed is a dominant trait. Rest of the traits, i.e., axial position of flower, green colour of pod and violet color of flower are dominant traits.

(12.) (d.) A true-breeding line is one that has undergone continuous self-pollination, shows stable trait inheritance and expression for several generations. Mendel used true-breeding plants for his experiments. He conducted his experiments on garden pea plant.

(13.) (a.) Axial flower - Dominant trait, Terminal flower - Recessive trait, Mendel - Father of genetics, True-breeding line - Undergone continuous self-pollination.

(14.) (a.) In the given figure: A - wrinkled seed, B - violet flower, C - constricted pod, D - terminal flower. The violet colour of flower is dominant over white colour.

(15.) (d.) All the these types of pollination, i.e., artificial pollination, cross pollination and selfpollination were performed by Mendel during his experiments on pea plant. He selected 14 true-breeding pea plant varieties as pairs to perform his experiments. He took contrasting characters for the same.

(16.) (c.) Mendel selected 14 true-breeding pea plant varieties as pairs, which were similar except for one character with contrasting traits. During Mendel's investigations into inheritance

pattern, it was for the first time that statistical analysis and mathematical logic were applied to problems in Biology. His experiments had a large sampling size. It gave greater credibility to the data that he collected.

(17.) (d.) Mendel chose contrasting traits for his experiments. These were smooth or wrinkled seeds, yellow or green seeds, smooth or inflated pods, etc. These plants were true-breeding, i.e, have undergone continuous self-pollination. Such true-breeding plants show stable trait inheritance and expression for several generations.

(18.) (b.) Gregor Mendel conducted hybridization experiments on garden peas for seven years (1856–1863). On the basis of results of his experiments, he proposed the laws of inheritance. He applied statistical analysis and mathematical logic for the biological problems. He used large sample size for the same.

(19.) (c.) Mendel conducted his experiments on garden pea plant. He investigated those characters in the garden pea plant that were manifested as two opposing traits, e.g., tall or dwarf plants. This allowed him to set up a basic framework of rules governing inheritance.

(20.) (b.) Mendel selected 14 true-breeding pea plant varieties as pairs which were similar except for one character with contrasting traits. He used true breeding lines because they show stable trait inheritance and expression for several generations

(21.) (d.) The first hybrid generation of Mendel's experiment is known as Filial1-progeny or F_1 -generation. All F_1 progeny plants were like one of their parents. The trait of other parent was not seen in them. For example when he crossed tall and dwarf plants, in F_1 -generation all tall plants were observed.

(22.) (a.) In F_2 -generation, Mendel obtained 1/4th dwarf and 3/4th tall plants. The tall and dwarf traits were identical to their parental type and did not show any blending. Thus, all the offsprings were either tall or dwarf. None were of in between height.

(23.) (b.) During the study of inheritance of one character in F_2 -generation Mendel obtained 3 : 1 ratio. The contrasting traits did not show any blending at either F_1 or F_2 stage.

(24.) (b.) The 'factors' of Mendel are today known as gene. These are the units of inheritance. They contain the information that is required to express a particular trait in an organism. They are responsible for transferring a particular trait from one generation to the next generation.

(25.) (c.) The slightly different forms of the same genes are called alleles. These alleles code for a pair of contrasting trait. For example, tall and dwarf are two forms of the gene of height.

(26.) (b.) Alleles are different molecular forms of a gene. They code for a pair of contrasting traits. In Tt, T (tall) and t (dwarf) are two contrasting traits of height.

(27.) (a.) The plant having 'Tt' genotype will be tall. 'T' and 't' are the contrasting traits of height. 'T' is dominant over 't'. Therefore the phenotype of that plant will be tall.

(28.) (c.) In homozygous condition, a particular gene has same alleles on homologous chromosomes. It is represented by two capital letters (XX) for a dominant trait and two lowercase letters (xx) for a recessive trait. An allele represents one particular form of a gene.

(29.) (b.) Tall and dwarf are the two alleles of gene of height. The dominant trait is 'Tall'. It was expressed by all the plants of F_1 generation in Mendel's cross. The genotype of all the plants of F_1 generation was "Tt', where 'T' represents tall, while 't' represents dwarf trait.

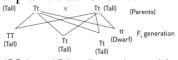
(30.) (a.) Genes - Unit of inheritance, Alleles - Slightly different forms of the same gene, Genotype - Genetic composition of an organism, Phenotype - Physical appearance of an organism.

(31.) (c.) A cross that is performed for the study of a single character is called Monohybrid cross. It determines the allele combinations of offspring for one particular gene only. Thus, monohybrid cross is a mating between two organisms that possess variations at one genetic chromosome of interest.

(32.) (a.) The given cross is a monohybrid cross. In the cross two true breeding tall (TT) and dwarf (tt) plants

(A) were crossed. In F₁ generation, all tall (Tt) plants

(B) were obtained. On selfing, in F_2 generation, tall and dwarf plants were obtained in the ratio of 3:1.


(33.) (b.) From the observations of monohybrid cross, it can be concluded that the pairs of parental pair segregate from each other. It occurs by the process of meiosis. In this process, only one allele is transmitted to a gamete. It is a random process so there is a 50% chance of a gamete containing either allele.

(34.) (d.) The production of gamets by the parents, the formation of zygotes, the F_1 and F_2 plants, can be understood by using Punnet square. It was developed by a British geneticist, Reginald C. Punnet to calculate the probability of all possible genotypes of offspring in a genetic cross.

(35.) (b.) Punnett square was developed by a British geneticist, Reginald C Punnett. It is a geographical representation. It is used to calculate the probability of all possible genotypes of offspring in a genetic cross. The possible gametes are usually written on the top row and left columns. All possible combinations are represented in boxes below in the squares. It generates a square output form.

(36.) (a.) In the text cross, organism whose genotype is to be determined, is crossed with the recessive parent. The progenies of test cross are then analyzed to predict the genotype of the test organism. Thus, it is helpful in determining the genotype of an organism.

(37.) (b.) In the given case, the genotype of both the parents will be Tt and Tt. It can be explained as follows:

(38.) (d.) Based on his observations of monohybrid cross, Mendel proposed two laws of inheritance. These are law of dominance and law of segregation. First law states that only dominant character appears in the F_1 generation. On the other hand, second law, i.e., law of segregation tells that alleles do not show any blending and both traits are recovered as such in F_2 generation.

(39.) (b.) According to Mendel's characters are controlled by discrete units. These units were called factors by Mendel. Nowadays, these factors are known as genes. These genes are the unit of inheritance. They transfer characters from one generation to the next generation.

(40.) (b.) The law of dominance is based on the results of Mendel's monohybrid cross. It states that characters are controlled by factors which occur in pairs. In a dissimilar pair of factors one dominates the other. It explains the expression of only one character in F_1 generation as well as expression of both parental characters in F_2 -generation.

(41.) (a.) First law of inheritance - Law of Dominance, Second law of inheritance - Law of segregation, Monohybrid cross - 3 : 1, Test cross - 1 : 1

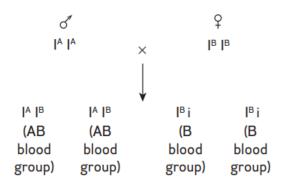
(42.) (d.) The second law of inheritance, i.e., the law of segregation is based on the fact that alleles do not show any blending. Both the characters are recovered as such in F_2 -generation, though one of three is not seen in F_1 -generation. Parents contain both allele which segregate during gamete formation and a gamete receives only one of the two factors.

(43.) (b.) The factor controlling any character is discrete and inpendent. It was concluded on the basis of observations of a cross. This cross was made between the plants having two contrasting traits. In the F_1 -generation only dominant trait, and in F_2 -generation the other trait, i.e., recessive one also appeared along with dominant trait. It shows that alleles do not show any blending. They segregate at the time of gamete formation. It is known as law of segregation.

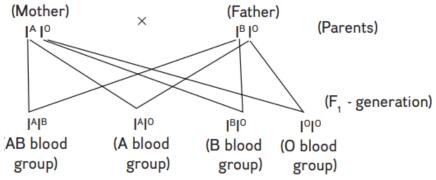
(44.) (d.) Among the given statements, statement (d.) is incorrect. Law of segregation is applicable in this experiment also. In this experiment, two alleles (red and white) do not show blending and appear as such in F_2 generation along with pink coloured flowers. Rest of the statements are correct about incomplete dominance.

(45.) (c.) The given situation can be explained on the basis of law of incomplete dominance. This law states that no allele expresses itself completely in the F_1 generation. An incomplete dominance is observed in this situation, e.g., pink coloured flowers of snapdragon obtained in F_1 generation on crossing pure red and white coloured flower plants.

(46.) (d.) In incomplete dominance, the phenotypic ratio of 1:2:1 is obtained. It can be explained with the help of following cross:


(47.) (c.) In case of co-dominance, the F_1 -generation resembles both parents. For example, ABO blood grouping in humans. ABO blood groups are controlled by the gene I. The gene I has three alleles; I^A , I^B and i. I^A and I^B are completely dominant over i. When I^A and i are present only I^A expresses. Likewise when I^B and i are present only I^B expresses. However, when I^A and I^B are present together, both are expressed. It is known as co-dominance.

(48.) (c.) It is an example of co-dominance because I^A and I^B both genes are expressed in the person having AB blood group. I^A and I^B both genes are dominant and expressed equally when present together. In case of incomplete dominance, the progeny is in-between the two parents. Segregation occurs in gamete formation. Genes are segregated in F₂-generation without any blending. Pleiotropy occurs when one gene


Codes And controls the expression of several different and unrelated traits.

(49.) (b.) In the given situation, the possible genotype for male and female will be as follows:

$$\begin{split} Male &- I^{A}i \\ Female &- I^{B}I^{B} \\ This can be understood by the following cross \end{split}$$

(50.) (d.) In the given case, both father and mother will be heterozygous for 'B' and 'A' blood group, respectively. It can be explained by the following cross:

